Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnesium isotope evidence that accretional vapour loss shapes planetary compositions


It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion1 or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3,4,5,6. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Magnesium isotope compositions expressed as relative deviations from the standard DSM-3, δ25/24MgDSM-3.
Figure 2: Median cumulative vapour fractions as a function of final planetary mass.
Figure 3: Comparison between modelled compositions of a vapour-depleted liquid and observed terrestrial compositions.


  1. 1

    Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30, 41–104 (1966)

    ADS  CAS  Google Scholar 

  2. 2

    Anders, E. Chemical processes in the early Solar System, as inferred from meteorites. Acc. Chem. Res. 1, 289–298 (1968)

    CAS  Google Scholar 

  3. 3

    Pringle, E. A., Moynier, F., Savage, P. S., Badro, J. & Barrat, J. A. Silicon isotopes in angrites and volatile loss in planetesimals. Proc. Natl Acad. Sci. USA 111, 17029–17032 (2014)

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H. & Kurosawa, K. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet. Sci. Lett. 427, 236–248 (2015)

    ADS  CAS  Google Scholar 

  5. 5

    Young, E. D., Tonui, E., Manning, C. E., Schauble, E. & Macris, C. A. Spinel–olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth Planet. Sci. Lett. 288, 524–533 (2009)

    ADS  CAS  Google Scholar 

  6. 6

    Poitrasson, F., Halliday, A. N., Lee, D. C., Levasseur, S. & Teutsch, N. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet. Sci. Lett. 223, 253–266 (2004)

    ADS  CAS  Google Scholar 

  7. 7

    Palme, H . & O’Neill, H. S. C. in The Mantle and Core, Vol. 2 of Treatise on Geochemistry (ed . Carlson, R. W. ) Ch. 2.01 (Elsevier-Pergamon, 2003)

  8. 8

    Weyer, S. et al. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264 (2005)

    ADS  CAS  Google Scholar 

  9. 9

    Georg, R. B., Halliday, A. N., Schauble, E. A. & Reynolds, B. C. Silicon in the Earth’s core. Nature 447, 1102–1106 (2007)

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Bourdon, B., Tipper, E. T., Fitoussi, C. & Stracke, A. Chondritic Mg isotope composition of the Earth. Geochim. Cosmochim. Acta 74, 5069–5083 (2010)

    ADS  CAS  Google Scholar 

  11. 11

    Pogge von Strandmann, P. A. E. et al. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim. Cosmochim. Acta 75, 5247–5268 (2011)

    ADS  CAS  Google Scholar 

  12. 12

    Teng, F. Z. et al. Magnesium isotopic composition of the Earth and chondrites. Geochim. Cosmochim. Acta 74, 4150–4166 (2010)

    ADS  CAS  Google Scholar 

  13. 13

    Wiechert, U. & Halliday, A. N. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth Planet. Sci. Lett. 256, 360–371 (2007)

    ADS  CAS  Google Scholar 

  14. 14

    Bizzarro, M. et al. High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS–implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth. J. Anal. At. Spectrom. 26, 565–577 (2011)

    CAS  Google Scholar 

  15. 15

    Handler, M. R., Baker, J. A., Schiller, M., Bennett, V. C. & Yaxley, G. M. Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet. Sci. Lett. 282, 306–313 (2009)

    ADS  CAS  Google Scholar 

  16. 16

    Chakrabarti, R. & Jacobsen, S. B. The isotopic composition of magnesium in the inner Solar System. Earth Planet. Sci. Lett. 293, 349–358 (2010)

    ADS  CAS  Google Scholar 

  17. 17

    Yang, W., Teng, F. Z. & Zhang, H. F. Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China craton. Earth Planet. Sci. Lett. 288, 475–482 (2009)

    ADS  CAS  Google Scholar 

  18. 18

    Teng, F. Z. et al. Interlaboratory comparison of magnesium isotopic compositions of 12 felsic to ultramafic igneous rock standards analyzed by MC-ICPMS. Geochem. Geophys. Geosyst. 16, 3197–3209 (2015)

    ADS  CAS  Google Scholar 

  19. 19

    Coath, C. D., Elliott, T. & Hin, R. C. Double-spike inversion for three-isotope systems. Chem. Geol. 451, 78–89 (2017)

    ADS  CAS  Google Scholar 

  20. 20

    Clayton, R. N. & Mayeda, T. K. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984)

    ADS  CAS  Google Scholar 

  21. 21

    Tipper, E. T. et al. The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet. Sci. Lett. 250, 241–253 (2006)

    ADS  CAS  Google Scholar 

  22. 22

    O’Rourke, J. G. & Stevenson, D. J. Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016)

    ADS  PubMed  Google Scholar 

  23. 23

    Carter, P. J., Leinhardt, Z. M., Elliott, T., Walter, M. J. & Stewart, S. T. Compositional evolution during rocky protoplanet accretion. Astrophys. J. 813, (2015)

  24. 24

    Fegley, B. & Schaefer, L. in The Atmosphere – History Vol. 6 of Treatise on Geochemistry (ed. Farquhar, J. ) Ch. 6.3 (Elsevier, 2013)

  25. 25

    Humayun, M. & Clayton, R. N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion. Geochim. Cosmochim. Acta 59, 2131–2148 (1995)

    ADS  CAS  Google Scholar 

  26. 26

    Javoy, M. et al. The chemical composition of the Earth: Enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010)

    ADS  CAS  Google Scholar 

  27. 27

    Young, E. D. Assessing the implications of K isotope cosmochemistry for evaporation in the preplanetary solar nebula. Earth Planet. Sci. Lett. 183, 321–333 (2000)

    ADS  CAS  Google Scholar 

  28. 28

    Boujibar, A., Andrault, D., Bolfan-Casanova, N., Bouhifd, M. A. & Monteux, J. Cosmochemical fractionation by collisional erosion during the Earth’s accretion. Nat. Commun. 6, 8295 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Pringle, E. A. & Moynier, F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion. Earth Planet. Sci. Lett. 473, 62–70 (2017)

    ADS  CAS  Google Scholar 

  30. 30

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. Populating the asteroid belt from two parent source regions due to the migration of giant planets—“The Grand Tack”. Meteorit. Planet. Sci. 47, 1941–1947 (2012)

    ADS  CAS  Google Scholar 

  31. 31

    Wasson, J. T. & Kallemeyn, G. W. Compositions of chondrites. Phil. Trans. R. Soc. Lond. A 325, 535–544 (1988)

    ADS  CAS  Google Scholar 

  32. 32

    Galy, A. et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J. Anal. At. Spectrom. 18, 1352–1356 (2003)

    CAS  Google Scholar 

  33. 33

    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011)

    ADS  CAS  PubMed  Google Scholar 

  34. 34

    Regelous, M., Elliott, T. & Coath, C. D. Nickel isotope heterogeneity in the early Solar System. Earth Planet. Sci. Lett. 272, 330–338 (2008)

    ADS  CAS  Google Scholar 

  35. 35

    Catanzaro, E. J., Murphy, T. J., Garner, E. L. & Shields, W. R. Absolute isotopic abundance ratios and atomic weight of magnesium. J. Res. Natl Bur. Stand. Sec. A 70, 453–458 (1966)

    CAS  Google Scholar 

  36. 36

    Pierrehumbert, R. T. Principles of Planetary Climate 555–564 (Cambridge University Press, 2010)

  37. 37

    Perez-Becker, D. & Chiang, E. Catastrophic evaporation of rocky planets. Mon. Not. R. Astron. Soc. 433, 2294–2309 (2013)

    ADS  Google Scholar 

  38. 38

    Lehmer, O. R., Catling, D. C. & Zahnle, K. J. The longevity of water ice on Ganymedes and Europas around migrated giant planets. Astrophys. J. 839, 32–40 (2017)

    ADS  Google Scholar 

  39. 39

    Patrick, M. R., Orr, T., Swanson, D. A. & Lev, E. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano. J. Volcanol. Geotherm. Res. 328, 247–261 (2016)

    ADS  CAS  Google Scholar 

  40. 40

    Moussallam, Y. et al. Hydrogen emissions from Erebus volcano, Antarctica. Bull. Volcanol. 74, 2109–2120 (2012)

    ADS  Google Scholar 

  41. 41

    Davies, A. G. Volcanism on Io: A Comparison with Earth 187 (Cambridge Univ. Press, 2007)

  42. 42

    Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995)

    ADS  CAS  MATH  Google Scholar 

  43. 43

    Melosh, H. J. Impact Cratering: A Geologic Process 62–63 (Oxford Univ. Press, 1989)

  44. 44

    Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M. & Wadhwa, M. Elemental and isotopic fractionation of type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta 71, 5544–5564 (2007)

    ADS  CAS  Google Scholar 

  45. 45

    Richter, F. M., Mendybaev, R. A., Christensen, J. N., Ebel, D. & Gaffney, A. Laboratory experiments bearing on the origin and evolution of olivine-rich chondrules. Meteorit. Planet. Sci. 46, 1152–1178 (2011)

    ADS  CAS  Google Scholar 

  46. 46

    Fegley, B. & Cameron, A. G. W. A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth Planet. Sci. Lett. 82, 207–222 (1987)

    ADS  CAS  Google Scholar 

  47. 47

    Schaefer, L. & Fegley, B. A thermodynamic model of high temperature lava vaporization on Io. Icarus 169, 216–241 (2004)

    ADS  CAS  Google Scholar 

  48. 48

    Schauble, E. A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim. Cosmochim. Acta 75, 844–869 (2011)

    ADS  CAS  Google Scholar 

  49. 49

    Huang, F., Wu, Z. Q., Huang, S. C. & Wu, F. First-principles calculations of equilibrium silicon isotope fractionation among mantle minerals. Geochim. Cosmochim. Acta 140, 509–520 (2014)

    ADS  CAS  Google Scholar 

  50. 50

    Polyakov, V. B. & Mineev, S. D. The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim. Cosmochim. Acta 64, 849–865 (2000)

    ADS  CAS  Google Scholar 

  51. 51

    Pahlevan, K. Chemical and Isotopic Consequences of Lunar Formation via Giant Impact. PhD thesis, California Institute of Technology (2010)

  52. 52

    Javoy, M., Balan, E., Méheut, M., Blanchard, M. & Lazzeri, M. First-principles investigation of equilibrium isotopic fractionation of O- and Si-isotopes between refractory solids and gases in the solar nebula. Earth Planet. Sci. Lett. 319, 118–127 (2012)

    ADS  Google Scholar 

  53. 53

    Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999)

    ADS  CAS  Google Scholar 

  54. 54

    Van Schmus, W. R. & Wood, J. A. A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967)

    ADS  CAS  Google Scholar 

  55. 55

    Sossi, P. A., Nebel, O. & Foden, J. Iron isotope systematics in planetary reservoirs. Earth Planet. Sci. Lett. 452, 295–308 (2016)

    ADS  CAS  Google Scholar 

  56. 56

    O’Neill, H. S. C. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. A 366, 4205–4238 (2008)

    ADS  Google Scholar 

  57. 57

    Badro, J. et al. Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth Planet. Sci. Lett. 254, 233–238 (2007)

    ADS  CAS  Google Scholar 

  58. 58

    Hin, R. C., Fitoussi, C., Schmidt, M. W. & Bourdon, B. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth Planet. Sci. Lett. 387, 55–66 (2014)

    ADS  CAS  Google Scholar 

  59. 59

    Armytage, R. M. G., Georg, R. B., Savage, P. S., Williams, H. M. & Halliday, A. N. Silicon isotopes in meteorites and planetary core formation. Geochim. Cosmochim. Acta 75, 3662–3676 (2011)

    ADS  CAS  Google Scholar 

  60. 60

    Schiller, M., Handler, M. R. & Baker, J. A. High-precision Mg isotopic systematics of bulk chondrites. Earth Planet. Sci. Lett. 297, 165–173 (2010)

    ADS  CAS  Google Scholar 

  61. 61

    Schiller, M., Baker, J. A. & Bizzarro, M. 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta 74, 4844–4864 (2010)

    ADS  CAS  Google Scholar 

  62. 62

    Larsen, K. K. et al. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. 735, L37 (2011)

    ADS  Google Scholar 

  63. 63

    Takazawa, E., Frey, F. A., Shimizu, N. & Obata, M. Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim. Cosmochim. Acta 64, 695–716 (2000)

    ADS  CAS  Google Scholar 

  64. 64

    Ionov, D. A., Ashchepkov, I. & Jagoutz, E. The provenance of fertile off-craton lithospheric mantle: Sr–Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem. Geol. 217, 41–75 (2005)

    ADS  CAS  Google Scholar 

  65. 65

    Brooker, R. A., James, R. H. & Blundy, J. D. Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem. Geol. 212, 179–204 (2004)

    ADS  CAS  Google Scholar 

  66. 66

    Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002)

    ADS  CAS  Google Scholar 

  67. 67

    Niu, Y. L. & Batiza, R. Magmatic processes at a slow-spreading ridge segment: 26°S Mid-Atlantic Ridge. J. Geophys. Res. 99, 19719–19740 (1994)

    ADS  Google Scholar 

  68. 68

    Robinson, C. J., White, R. S., Bickle, M. J. & Minshull, T. A. Restricted melting under the very slow-spreading Southwest Indian ridge. Geol. Soc. London Spec. Publ. 118, 131–141 (1996)

    ADS  CAS  Google Scholar 

Download references


We thank the Natural History Museum in London, NASA (National Aeronautics and Space Administration), O. Nebel, D. Ionov, S. Nielsen, E. Takazawa, K. Sims, Y. Niu, R. Brooker and C. Robinson for supplying us with various samples. We acknowledge C. Bierson for his help with direct outflow vapour loss modelling. This study was funded by NERC grant NE/L007428/1 to T.E., C.D.C. and M.J.W., which was motivated by NE/C0983/1. ERC Adv Grant 321209 ISONEB further supported the work of T.E. and C.D.C. NERC grant NE/K004778/1 to Z.M.L. funded P.J.C.

Author information




All data presented were measured by R.C.H. R.C.H. and C.D.C. performed vapour–liquid modelling. P.J.C. was responsible for calculations relating to N-body simulations. F.N. modelled the direct outflow vapour loss mechanism. R.C.H. and T.E. wrote the manuscript. C.D.C., Y.-J.L., P.A.E.P.v.S. and M.W. were involved in measurements in the initial stages of this study. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Remco C. Hin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks F. Moynier and E. Young for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Magnesium isotope compositions of carbonaceous chondrites.

The compositions are plotted against their average literature oxygen isotope compositions53. These mass-dependent oxygen isotope measurements reflect parent body hydrothermal alteration20, so the correlation (R2 = 0.78) between Mg and O isotopes (as well as with the petrographic group54, indicated in brackets under sample names) implies that the Mg isotope compositions of some carbonaceous chondrites have been altered by hydrothermal processes. The most altered samples, to the upper right of this diagram, are excluded from our chondrite Mg isotope means.

Source data

Extended Data Figure 2 Magnesium isotope compositions of terrestrial peridotites.

The compositions are plotted against whole rock MgO (a) and Al2O3 (b) contents. The absence of correlations of Mg isotope compositions with MgO or Al2O3 indicates the absence of discernible Mg isotope fractionation during partial melting.

Source data

Extended Data Figure 3 Comparison between modelled compositions of a vapour-depleted liquid and observed planetary compositions.

As Fig. 3, showing a, Modelled changes in isotope compositions (‰ per amu) against total relative vapour loss (Ftotal, in mole fractions). b, Observed isotope compositions relative to enstatite chondrites (errors are 2 s.e.m.). c, Loss (mole fraction) of a given element (X), fX, versus Ftotal. d, Molar element/Ca ratio of the terrestrial mantle7, normalized to that of enstatite chondrites31 ((X/Ca)EH). Compared to Fig. 3, observed isotope compositions for Mars, and eucrite and angrite parents bodies as well as elemental and isotopic Fe observations are additionally included (b and d; Fe isotope data from ref. 55 and references therein, all other references as in Fig. 3). Comparison of observed Fe contents and isotope ratios are complicated by core formation because most Fe enters the core. In our model we assume that the iron in the core has not been affected by vaporization, inferred to occur later. For instance, the effect of ~48% Fe loss (c) on the current bulk silicate Earth Fe content is dependent on the fraction of Fe that entered the core before collisional vaporization and the oxygen fugacity evolution of the growing Earth. For reference, the datum labelled Fe** in d is therefore the Fe/Ca of the bulk Earth (calculated from ref. 56) instead of the Fe/Ca of the bulk silicate Earth. Similarly, Si can also enter the core, although its quantity is likely to be <3 wt% (ref. 57). Right-pointing arrow in a indicates the effect of 3 wt% Si in the core (3,000 K assumed for metal–silicate Si isotope fractionation factor58).

Source data

Extended Data Figure 4 Comparison between modelled compositions of a vapour depleted liquid and observed planetary compositions.

Similar to Extended Data Fig. 3, but for model runs with a CI chondrite initial composition. a, Modelled changes in isotope compositions (‰ per amu) against total relative vapour loss (Ftotal, in mole fractions). b, Observed isotope compositions relative to CI chondrites (errors are 2 s.e.m.). Note that observed Mg and Fe isotope compositions are presented relative to their chondritic mean, whereas Si isotope observations are relative to a mean of carbonaceous and ordinary chondrites59, because those chondrites have indistinguishable Si isotope compositions, yet are distinctly different from enstatite chondrites (see ref. 4 and references therein). c, Loss (mole fraction) of a given element (X), fX, versus Ftotal. d, Molar element/Ca ratio of the terrestrial mantle7, normalized to that of CI chondrites7 ((X/Ca)CI). As in Extended Data Fig. 3, Fe** in d is the Fe/Ca of the bulk Earth.

Source data

Extended Data Figure 5 Magnesium isotope compositions of reference samples analysed in multiple studies.

The shaded areas show the mean and 2 s.e.m. of the isotope compositions observed in this study. Data are from this study and refs 5, 10, 11, 12, 13, 14, 16, 17, 60, 62, 62. Note that the plotted composition of Murchison from ref. 10 is a mean of the two replicates presented in table 1 of ref. 10. The value for BHVO from ref. 16 is BHVO-1, all others are BHVO-2.

Extended Data Figure 6 Variation in velocity of individual impacts (normalized by target-body escape velocity) as a function of target body radius.

Central line denotes median value, shaded box encompasses the region spanning the 25th to 75th percentiles, upper lines denote the 90th percentile. Bulk density is assumed to be 3,000 kg m−3.

Extended Data Figure 7 Fractional mass loss in the Grand Tack simulation as a function of final body radius for the direct vapour outflow model.

This illustrates results both with (white boxes, as Fig. 2b) and without (shaded boxes) the inclusion of inheritance effects (see Methods). Boxes denote the median value, bars denote the 25th and 75th percentiles.

Extended Data Table 1 Sample sources and weights of digested sample from which aliquots were taken for Mg isotope analysis in this study

Supplementary information

Supplementary Data

This file contains source data for Table 1 (Magnesium isotope compositions of chondrites, terrestrial (ultra-)mafics, and achondrites). (XLSX 19 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hin, R., Coath, C., Carter, P. et al. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. Nature 549, 511–515 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing