Letter

Ground-to-satellite quantum teleportation

Received:
Accepted:
Published online:

Abstract

An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly1. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances2, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks3,4 and distributed quantum computation5,6. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels7,8,9,10,11,12, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’13 the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit)14. Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & A single quantum cannot be cloned. Nature 299, 802–803 (1982)

  2. 2.

    et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

  3. 3.

    , , & Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5393 (1998)

  4. 4.

    et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012)

  5. 5.

    & Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999)

  6. 6.

    & A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

  7. 7.

    et al. Experimental quantum teleportation. Nature 390, 575–579 (1997)

  8. 8.

    et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012)

  9. 9.

    et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)

  10. 10.

    , , , & Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007)

  11. 11.

    et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon. 10, 671–675 (2016)

  12. 12.

    et al. Quantum teleportation across a metropolitan fibre network. Nat. Photon. 10, 676–680 (2016)

  13. 13.

    The quantum internet. Nature 453, 1023–1030 (2008)

  14. 14.

    & Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)

  15. 15.

    et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

  16. 16.

    et al. Observation of ten-photon entanglement using thin BiB3O6 crystals. Optica 4, 77–83 (2017)

  17. 17.

    & Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

  18. 18.

    et al. Satellite-to-ground quantum key distribution. Nature 549, (2017)

  19. 19.

    et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006)

  20. 20.

    et al. Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 103–107 (2008)

  21. 21.

    et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014)

  22. 22.

    , , & “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

  23. 23.

    , , & Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

  24. 24.

    et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

  25. 25.

    et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

  26. 26.

    et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015)

  27. 27.

    , , & An efficient quantum light–matter interface with sub-second lifetime. Nat. Photon. 10, 381–384 (2016)

  28. 28.

    World-class observatory rising on ‘Roof of the World’. Science 337, 1156–1157 (2012)

  29. 29.

    et al. Site characterization studies in high plateau of Tibet. Proc. SPIE 8444, 84441K (2012)

  30. 30.

    , , , & Optical turbulence characterization by WRF model above Ali, Tibet. J. Phys. Conf. Ser. 595, 012037 (2015)

Download references

Acknowledgements

We thank many colleagues at the National Space Science Center, National Astronomical Observatories and Xi’an Satellite Control Centre, especially B.-M. Xu, J. Li, J.-C. Gong, B. Chen, X.-J. Jiang and T. Xi, for their management and coordination. We thank T. Chen and Y.-H. Zhou from Ngari Observatory for their support during the experiment. This work was supported by the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences and National Natural Science Foundation of China.

Author information

Affiliations

  1. Department of Modern Physics and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

    • Ji-Gang Ren
    • , Ping Xu
    • , Hai-Lin Yong
    • , Sheng-Kai Liao
    • , Juan Yin
    • , Wei-Yue Liu
    • , Wen-Qi Cai
    • , Meng Yang
    • , Li Li
    • , Kui-Xing Yang
    • , Xuan Han
    • , Peng Shang
    • , Cheng Guo
    • , Nai-Le Liu
    • , Chao-Yang Lu
    • , Yu-Ao Chen
    • , Cheng-Zhi Peng
    •  & Jian-Wei Pan
  2. Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China

    • Ji-Gang Ren
    • , Ping Xu
    • , Hai-Lin Yong
    • , Liang Zhang
    • , Sheng-Kai Liao
    • , Juan Yin
    • , Wei-Yue Liu
    • , Wen-Qi Cai
    • , Meng Yang
    • , Li Li
    • , Kui-Xing Yang
    • , Xuan Han
    • , Peng Shang
    • , Cheng Guo
    • , Nai-Le Liu
    • , Chao-Yang Lu
    • , Rong Shu
    • , Yu-Ao Chen
    • , Cheng-Zhi Peng
    • , Jian-Yu Wang
    •  & Jian-Wei Pan
  3. Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

    • Liang Zhang
    • , Ding-Quan Liu
    • , Yao-Wu Kuang
    • , Zhi-Ping He
    • , Rong Shu
    •  & Jian-Yu Wang
  4. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

    • Yong-Qiang Yao
  5. Nanjing Astronomical Instruments Company Limited, Chinese Academy of Sciences, Nanjing 210042, China

    • Ji Li
    •  & Hai-Yan Wu
  6. Shanghai Engineering Center for Microsatellites, Shanghai 201203, China

    • Song Wan
    • , Lei Liu
    •  & Zhen-Cai Zhu
  7. Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China

    • Ru-Hua Zheng
  8. State Key Laboratory of Astronautic Dynamics, Xi’an Satellite Control Center, Xi’an 710061, China

    • Kai Tian

Authors

  1. Search for Ji-Gang Ren in:

  2. Search for Ping Xu in:

  3. Search for Hai-Lin Yong in:

  4. Search for Liang Zhang in:

  5. Search for Sheng-Kai Liao in:

  6. Search for Juan Yin in:

  7. Search for Wei-Yue Liu in:

  8. Search for Wen-Qi Cai in:

  9. Search for Meng Yang in:

  10. Search for Li Li in:

  11. Search for Kui-Xing Yang in:

  12. Search for Xuan Han in:

  13. Search for Yong-Qiang Yao in:

  14. Search for Ji Li in:

  15. Search for Hai-Yan Wu in:

  16. Search for Song Wan in:

  17. Search for Lei Liu in:

  18. Search for Ding-Quan Liu in:

  19. Search for Yao-Wu Kuang in:

  20. Search for Zhi-Ping He in:

  21. Search for Peng Shang in:

  22. Search for Cheng Guo in:

  23. Search for Ru-Hua Zheng in:

  24. Search for Kai Tian in:

  25. Search for Zhen-Cai Zhu in:

  26. Search for Nai-Le Liu in:

  27. Search for Chao-Yang Lu in:

  28. Search for Rong Shu in:

  29. Search for Yu-Ao Chen in:

  30. Search for Cheng-Zhi Peng in:

  31. Search for Jian-Yu Wang in:

  32. Search for Jian-Wei Pan in:

Contributions

C.-Z.P. and J.-W.P. conceived the research. C.-Z.P., J.-Y.W. and J.-W.P. designed the experiment. J.-G.R., X.P., H.-L.Y., J.Y., K.-X.Y., X.H., Y.-A.C., C.-Z.P. and J.-W.P. designed and developed the multi-photon sources. J.-G.R., H.-L.Y., K.-X.Y., X.H., J.L., H.-Y.W., C.-Z.P. and J.-W.P. designed and operated the telescopes. J.-G.R., L.Z., S.-K.L., J.Y., W.-Y.L., W.-Q.C., M.Y., Y.-W.K., Z.-P.H., S.W., L.L., D.-Q.L., R.S., Z.-C.Z., C.-Z.P., J.-Y.W. and J.-W.P. designed and developed the payloads on the satellite. H.-L.Y., L.Z., W.-Y.L., W.-Q.C. and P.S. developed the software. C.-Y.L., Y.-A.C., C.-Z.P. and J.-W.P. analysed the data and wrote the manuscript, with input from J.-G.R., P.X. and H.-L.Y. All the authors contributed to the data collection, discussed the results and reviewed the manuscript. J.-W.P. supervised the whole project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Cheng-Zhi Peng or Jian-Yu Wang or Jian-Wei Pan.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data