Letter | Published:

Mimicking biological stress–strain behaviour with synthetic elastomers

Nature volume 549, pages 497501 (28 September 2017) | Download Citation

Abstract

Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics1,2,3,4,5,6,7,8,9. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control2,10,11,12,13,14,15,16. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress–strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015)

  2. 2.

    , & Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38, 584–671 (2013)

  3. 3.

    & Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1014 (2002)

  4. 4.

    et al. Bottlebrush elastomers: a new platform for freestanding electroactuation. Adv. Mater. 29, 1604209 (2017)

  5. 5.

    & Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

  6. 6.

    Soft robotics: a perspective—current trends and prospects for the future. Soft Robotics 1, 5–11 (2014)

  7. 7.

    et al. Epidermal electronics. Science 333, 838–843 (2011)

  8. 8.

    , & Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

  9. 9.

    et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010)

  10. 10.

    , , & Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

  11. 11.

    & Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016)

  12. 12.

    , , , & Quantifying the impact of molecular defects on polymer network elasticity. Science 353, 1264–1268 (2016)

  13. 13.

    et al. Composite living fibers for creating tissue constructs using textile techniques. Adv. Funct. Mater. 24, 4060–4067 (2014)

  14. 14.

    , , & Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

  15. 15.

    et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015)

  16. 16.

    et al. An elastic second skin. Nat. Mater. 15, 911–918 (2016)

  17. 17.

    et al. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 15, 183–189 (2016)

  18. 18.

    , , , & Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks. Macromolecules 25, 5241–5251 (1992)

  19. 19.

    , , , & Prediction of melt state poly(α-olefin) rheological properties: the unsuspected role of the average molecular weight per backbone bond. Macromolecules 35, 10096–10101 (2002)

  20. 20.

    et al. Molecular brushes as super-soft elastomers. Polymer 47, 7198–7206 (2006)

  21. 21.

    , , , & Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34, 7025–7033 (2001)

  22. 22.

    , , & Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38, 7852–7862 (2005)

  23. 23.

    et al. Bottlebrush-guided polymer crystallization resulting in supersoft and reversibly moldable physical networks. Macromolecules 50, 2103–2111 (2017)

  24. 24.

    , , , & Design of graft block polymer thermoplastics. Macromolecules 49, 9108–9118 (2016)

  25. 25.

    , , & Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009)

  26. 26.

    & Synthesis and melt self-assembly of PS–PMMA–PLA triblock bottlebrush copolymers. Macromolecules 47, 2864–2874 (2014)

  27. 27.

    , & Nonlinear elasticity: from single chain to networks and gels. Macromolecules 46, 3679–3692 (2013)

  28. 28.

    & Linear dynamic mechanical properties of an SBS block copolymer. Polym. Eng. Sci. 17, 535–543 (1977)

  29. 29.

    , , & Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: preparation of samples and determination of loop/bridge ratio. Macromolecules 38, 9718–9723 (2005)

  30. 30.

    et al. Poly(dimethylsiloxane-b-methyl methacrylate): a promising candidate for sub-10 nm patterning. Macromolecules 48, 3422–3430 (2015)

Download references

Acknowledgements

We thank the National Science Foundation for funding (grants DMR 1436201, DMR 1407645 and DMR 1624569). We thank M. Rubinstein for discussions; and E. T. Samulski, G. R. Newkome and K. A. Sheyko for reviewing the paper prior to submission.

Author information

Affiliations

  1. Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599, USA

    • Mohammad Vatankhah-Varnosfaderani
    • , William F. M. Daniel
    • , Matthew H. Everhart
    • , Ashish A. Pandya
    •  & Sergei S. Sheiko
  2. Department of Polymer Science, University of Akron, Akron, Ohio 44325-3909, USA

    • Heyi Liang
    •  & Andrey V. Dobrynin
  3. Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA

    • Krzysztof Matyjaszewski

Authors

  1. Search for Mohammad Vatankhah-Varnosfaderani in:

  2. Search for William F. M. Daniel in:

  3. Search for Matthew H. Everhart in:

  4. Search for Ashish A. Pandya in:

  5. Search for Heyi Liang in:

  6. Search for Krzysztof Matyjaszewski in:

  7. Search for Andrey V. Dobrynin in:

  8. Search for Sergei S. Sheiko in:

Contributions

M.V.-V. designed, synthesized and characterized the monomers, polymer melts and elastomers (bottlebrushes, combs and ABA-based). W.F.M.D. performed atomic-force microscopy experiments, rheology measurements and analysis. M.H.E. synthesized PDMS combs and revised the manuscript. A.A.P. synthesized PDMS combs. K.M. provided guidance on the synthesis of bottlebrushes. H.L. and A.V.D. provided theoretical analysis of mechanical properties, developed the theoretical foundation for materials design and ABA networks, and performed computer simulations. S.S.S. was the principal investigator. S.S.S. and A.V.D. were primary writers of the manuscript. All authors discussed the results and provided feedback on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Andrey V. Dobrynin or Sergei S. Sheiko.

Reviewer Information Nature thanks D. Gracias, J. Kornfield and D. Vlassopoulos for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Information sections S1-S7, which include Supplementary Figures, Tables, Data and additional references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature23673

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.