Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mimicking biological stress–strain behaviour with synthetic elastomers

Abstract

Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics1,2,3,4,5,6,7,8,9. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control2,10,11,12,13,14,15,16. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress–strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Programming mechanical performance.
Figure 2: Breaking the ‘golden rule’ of synthetic polymers.
Figure 3: Mimicking the mechanical properties of biological tissues with synthetic elastomers and plastomers.

Similar content being viewed by others

References

  1. Minev, I. R. et al. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015)

    Article  ADS  CAS  Google Scholar 

  2. Chen, Q. Z., Liang, S. L. & Thouas, G. A. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38, 584–671 (2013)

    Article  CAS  Google Scholar 

  3. Griffith, L. G. & Naughton, G. Tissue engineering—current challenges and expanding opportunities. Science 295, 1009–1014 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Vatankhah-Varnoosfaderani, M. et al. Bottlebrush elastomers: a new platform for freestanding electroactuation. Adv. Mater. 29, 1604209 (2017)

    Article  Google Scholar 

  5. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robotics 1, 5–11 (2014)

    Article  Google Scholar 

  7. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Lv, S. et al. Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69–73 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Meyers, M. A., Chen, P.-Y., Lin, A. Y.-M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008)

    Article  CAS  Google Scholar 

  11. Green, J. J. & Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 540, 386–394 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhong, M., Wang, R., Kawamoto, K., Olsen, B. D. & Johnson, J. A. Quantifying the impact of molecular defects on polymer network elasticity. Science 353, 1264–1268 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Akbari, M. et al. Composite living fibers for creating tissue constructs using textile techniques. Adv. Funct. Mater. 24, 4060–4067 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    Article  CAS  Google Scholar 

  15. Grindy, S. C. et al. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat. Mater. 14, 1210–1216 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, B. et al. An elastic second skin. Nat. Mater. 15, 911–918 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Daniel, W. F. et al. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater. 15, 183–189 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Patel, S. K., Malone, S., Cohen, C., Gillmor, J. R. & Colby, R. H. Elastic modulus and equilibrium swelling of poly(dimethylsiloxane) networks. Macromolecules 25, 5241–5251 (1992)

    Article  ADS  CAS  Google Scholar 

  19. Fetters, L. J., Lohse, D. J., García-Franco, C. A., Brant, P. & Richter, D. Prediction of melt state poly(α-olefin) rheological properties: the unsuspected role of the average molecular weight per backbone bond. Macromolecules 35, 10096–10101 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Pakula, T. et al. Molecular brushes as super-soft elastomers. Polymer 47, 7198–7206 (2006)

    Article  CAS  Google Scholar 

  21. Daniels, D., McLeish, T., Crosby, B., Young, R. & Fernyhough, C. Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34, 7025–7033 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Kapnistos, M., Vlassopoulos, D., Roovers, J. & Leal, L. Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38, 7852–7862 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Daniel, W. F. et al. Bottlebrush-guided polymer crystallization resulting in supersoft and reversibly moldable physical networks. Macromolecules 50, 2103–2111 (2017)

    Article  ADS  CAS  Google Scholar 

  24. Zhang, J., Schneiderman, D. K., Li, T., Hillmyer, M. A. & Bates, F. S. Design of graft block polymer thermoplastics. Macromolecules 49, 9108–9118 (2016)

    Article  ADS  CAS  Google Scholar 

  25. Xia, Y., Olsen, B. D., Kornfield, J. A. & Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 131, 18525–18532 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Bolton, J. & Rzayev, J. Synthesis and melt self-assembly of PS–PMMA–PLA triblock bottlebrush copolymers. Macromolecules 47, 2864–2874 (2014)

    Article  ADS  CAS  Google Scholar 

  27. Carrillo, J.-M. Y., MacKintosh, F. C. & Dobrynin, A. V. Nonlinear elasticity: from single chain to networks and gels. Macromolecules 46, 3679–3692 (2013)

    Article  ADS  CAS  Google Scholar 

  28. Gouinlock, E. V. & Porter, R. S. Linear dynamic mechanical properties of an SBS block copolymer. Polym. Eng. Sci. 17, 535–543 (1977)

    Article  Google Scholar 

  29. Takano, A., Kamaya, I., Takahashi, Y. & Matsushita, Y. Effect of loop/bridge conformation ratio on elastic properties of the sphere-forming ABA triblock copolymers: preparation of samples and determination of loop/bridge ratio. Macromolecules 38, 9718–9723 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Luo, Y. et al. Poly(dimethylsiloxane-b-methyl methacrylate): a promising candidate for sub-10 nm patterning. Macromolecules 48, 3422–3430 (2015)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation for funding (grants DMR 1436201, DMR 1407645 and DMR 1624569). We thank M. Rubinstein for discussions; and E. T. Samulski, G. R. Newkome and K. A. Sheyko for reviewing the paper prior to submission.

Author information

Authors and Affiliations

Authors

Contributions

M.V.-V. designed, synthesized and characterized the monomers, polymer melts and elastomers (bottlebrushes, combs and ABA-based). W.F.M.D. performed atomic-force microscopy experiments, rheology measurements and analysis. M.H.E. synthesized PDMS combs and revised the manuscript. A.A.P. synthesized PDMS combs. K.M. provided guidance on the synthesis of bottlebrushes. H.L. and A.V.D. provided theoretical analysis of mechanical properties, developed the theoretical foundation for materials design and ABA networks, and performed computer simulations. S.S.S. was the principal investigator. S.S.S. and A.V.D. were primary writers of the manuscript. All authors discussed the results and provided feedback on the manuscript.

Corresponding authors

Correspondence to Andrey V. Dobrynin or Sergei S. Sheiko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks D. Gracias, J. Kornfield and D. Vlassopoulos for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information sections S1-S7, which include Supplementary Figures, Tables, Data and additional references. (PDF 3505 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatankhah-Varnosfaderani, M., Daniel, W., Everhart, M. et al. Mimicking biological stress–strain behaviour with synthetic elastomers. Nature 549, 497–501 (2017). https://doi.org/10.1038/nature23673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23673

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing