Letter | Published:

Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

Nature volume 549, pages 252256 (14 September 2017) | Download Citation


Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order1 may break space-inversion symmetry2,3 and thus allow electric-field control of magnetism4,5, or may produce emergent spin–orbit effects6 that enable efficient spin–charge interconversion7. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen–vacancy defect in diamond8,9,10, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction11,12. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen–vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Noncollinear spin structures. Can. J. Phys. 65, 1210–1232 (1987)

  2. 2.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

  3. 3.

    & Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

  4. 4.

    et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

  5. 5.

    et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014)

  6. 6.

    et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016)

  7. 7.

    et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016)

  8. 8.

    et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

  9. 9.

    et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

  10. 10.

    et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014)

  11. 11.

    , , , & Spiral magnetic ordering in bismuth ferrite. J. Phys. Chem. 15, 4835–4846 (1982)

  12. 12.

    et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)

  13. 13.

    Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999)

  14. 14.

    & Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys. Condens. Matter 20, 093002 (2008)

  15. 15.

    Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009)

  16. 16.

    , , & Antiferromagnetic spintronics. Nature Nanotechnol. 11, 231–241 (2016)

  17. 17.

    & Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

  18. 18.

    et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9, 975–979 (2010)

  19. 19.

    et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat. Phys. 8, 81–88 (2011)

  20. 20.

    , , & Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)

  21. 21.

    , , & Structure and spin dynamics of multiferroic BiFeO3. J. Phys. Cond. Mat. 26, 433202 (2014)

  22. 22.

    et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013)

  23. 23.

    et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotechnol. 7, 320–324 (2012)

  24. 24.

    et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015)

  25. 25.

    et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv. Mater. 29, 1602327 (2017)

  26. 26.

    et al. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nat. Commun. 7, 12664 (2016)

  27. 27.

    & Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005)

  28. 28.

    et al. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. Phys. Rev. Lett. 107, 207206 (2011)

  29. 29.

    , , & Magnetostatics and the rotational sense of cycloidal spin spirals. Phys. Rev. B 84, 054404 (2011)

  30. 30.

    et al. Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012)

  31. 31.

    et al. Properties of rare-earth scandate single crystals (Re=Nd-Dy). J. Cryst. Growth 310, 2649–2658 (2008)

  32. 32.

    , , , & Epitaxial strain and electric boundary condition effects on the structural and ferroelectric properties of BiFeO3 films. Phys. Rev. B 84, 094105 (2011)

  33. 33.

    , , , & Effect of symmetry mismatch on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014)

  34. 34.

    et al. Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transitions 79, 991–1017 (2006)

  35. 35.

    et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009)

  36. 36.

    , , & Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 10, 614–618 (2015)

  37. 37.

    et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012)

  38. 38.

    et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016)

  39. 39.

    et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013)

  40. 40.

    et al. Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicrometer resolution. Phys. Rev. Appl. 4, 014003 (2015)

  41. 41.

    Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, 1996)

Download references


We thank J. P. Tetienne and T. Hingant for experimental assistance in the early stages of the project. We are grateful to J. M. D. Coey for discussions. This research was supported by the European Research Council (ERC-StG-2014, IMAGINE), the European Union Seventh Framework Program (FP7/2007-2013) under the project DIADEMS, and by the French Agence Nationale de la Recherche (ANR) through project FERROMON and PIAF. This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (Labex NanoSaclay, reference: ANR-10-LABX-0035).

Author information

Author notes

    • I. Gross
    •  & W. Akhtar

    These authors contributed equally to this work.


  1. Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France

    • I. Gross
    • , W. Akhtar
    • , L. J. Martínez
    • , S. Chouaieb
    •  & V. Jacques
  2. Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France

    • I. Gross
  3. Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France

    • V. Garcia
    • , K. Garcia
    • , C. Carrétéro
    • , A. Barthélémy
    • , M. Bibes
    •  & S. Fusil
  4. Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland

    • P. Appel
    •  & P. Maletinsky
  5. Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

    • J.-V. Kim
  6. SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

    • J. Y. Chauleau
    •  & M. Viret
  7. Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France

    • J. Y. Chauleau
    •  & N. Jaouen
  8. Université d’Evry, Université Paris-Saclay, 91025 Evry, France

    • S. Fusil


  1. Search for I. Gross in:

  2. Search for W. Akhtar in:

  3. Search for V. Garcia in:

  4. Search for L. J. Martínez in:

  5. Search for S. Chouaieb in:

  6. Search for K. Garcia in:

  7. Search for C. Carrétéro in:

  8. Search for A. Barthélémy in:

  9. Search for P. Appel in:

  10. Search for P. Maletinsky in:

  11. Search for J.-V. Kim in:

  12. Search for J. Y. Chauleau in:

  13. Search for N. Jaouen in:

  14. Search for M. Viret in:

  15. Search for M. Bibes in:

  16. Search for S. Fusil in:

  17. Search for V. Jacques in:


I.G., W.A., L.J.M. and S.C. performed the NV magnetometry experiments; I.G., W.A., L.J.M. and V.J. analysed the data and performed magnetic modelling with assistance from M.V.; K.G. and C.C. fabricated the BFO sample; V.G. and S.F. performed the structural analysis and the piezoresponse force microscopy experiments; P.A. and P.M. engineered diamond tips hosting single NV defects; I.G., W.A., V.G., S.F., M.B. and V.J. wrote the manuscript. All authors contributed to the interpretation of the data and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to V. Jacques.

Reviewer Information Nature thanks J. Mundy and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.