Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer

Abstract

Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order1 may break space-inversion symmetry2,3 and thus allow electric-field control of magnetism4,5, or may produce emergent spin–orbit effects6 that enable efficient spin–charge interconversion7. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen–vacancy defect in diamond8,9,10, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction11,12. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen–vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferroelectric and magnetic order in BiFeO3.
Figure 2: Mapping the magnetic texture of BFO with NV magnetometry.
Figure 3: Electrical control of the spin cycloid.
Figure 4: Quantitative analysis of the spin cycloid magnetic texture.

Similar content being viewed by others

References

  1. Coey, J. M. D. Noncollinear spin structures. Can. J. Phys. 65, 1210–1232 (1987)

    Article  ADS  CAS  Google Scholar 

  2. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Cheong, S.-W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014)

    Article  ADS  CAS  Google Scholar 

  6. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016)

    Article  ADS  Google Scholar 

  7. Zhang, W. et al. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3 . Sci. Adv. 2, e1600759 (2016)

    Article  ADS  Google Scholar 

  8. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014)

    Article  ADS  CAS  Google Scholar 

  11. Sosnowska, I., Neumaier, T. P., Steichele, E., Peterlin-Neumaier, T. & Steichele, E. Spiral magnetic ordering in bismuth ferrite. J. Phys. Chem. 15, 4835–4846 (1982)

    CAS  Google Scholar 

  12. Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Locatelli, A. & Bauer, E. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys. Condens. Matter 20, 093002 (2008)

    Article  ADS  Google Scholar 

  15. Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nature Nanotechnol. 11, 231–241 (2016)

    Article  ADS  CAS  Google Scholar 

  17. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  CAS  Google Scholar 

  18. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 . Nat. Mater. 9, 975–979 (2010)

    Article  ADS  CAS  Google Scholar 

  19. Balke, N. et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3 . Nat. Phys. 8, 81–88 (2011)

    Article  ADS  Google Scholar 

  20. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)

    Article  ADS  CAS  Google Scholar 

  21. Park, J.-G., Le, M. D., Jeong, J. & Lee, S. Structure and spin dynamics of multiferroic BiFeO3 . J. Phys. Cond. Mat. 26, 433202 (2014)

    Article  Google Scholar 

  22. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013)

    Article  ADS  CAS  Google Scholar 

  23. Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotechnol. 7, 320–324 (2012)

    Article  ADS  CAS  Google Scholar 

  24. Tetienne, J. P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015)

    Article  ADS  CAS  Google Scholar 

  25. Agbelele, A. et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3 . Adv. Mater. 29, 1602327 (2017)

    Article  Google Scholar 

  26. Bertinshaw, J. et al. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Nat. Commun. 7, 12664 (2016)

    Article  ADS  CAS  Google Scholar 

  27. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005)

    Article  ADS  Google Scholar 

  28. Ramazanoglu, M. et al. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3 . Phys. Rev. Lett. 107, 207206 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Mikuszeit, N., Meckler, S., Wiesendanger, R. & Miranda, R. Magnetostatics and the rotational sense of cycloidal spin spirals. Phys. Rev. B 84, 054404 (2011)

    Article  ADS  Google Scholar 

  30. He, Q. et al. Magnetotransport at domain walls in BiFeO3 . Phys. Rev. Lett. 108, 067203 (2012)

    Article  ADS  CAS  Google Scholar 

  31. Uecker, R. et al. Properties of rare-earth scandate single crystals (Re=Nd-Dy). J. Cryst. Growth 310, 2649–2658 (2008)

    Article  ADS  CAS  Google Scholar 

  32. Johann, F., Morelli, A., Biggemann, D., Arredondo, M. & Vrejoiu, I. Epitaxial strain and electric boundary condition effects on the structural and ferroelectric properties of BiFeO3 films. Phys. Rev. B 84, 094105 (2011)

    Article  ADS  Google Scholar 

  33. Chen, Z. H., Damodaran, A. R., Xu, R., Lee, S. & Martin, L. W. Effect of symmetry mismatch on the domain structure of rhombohedral BiFeO3 thin films. Appl. Phys. Lett. 104, 182908 (2014)

    Article  ADS  Google Scholar 

  34. Zavaliche, F. et al. Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transitions 79, 991–1017 (2006)

    Article  CAS  Google Scholar 

  35. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009)

    Article  ADS  CAS  Google Scholar 

  36. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 10, 614–618 (2015)

    Article  ADS  CAS  Google Scholar 

  37. Rondin, L. et al. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100, 153118 (2012)

    Article  ADS  Google Scholar 

  38. Appel, P. et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016)

    Article  ADS  Google Scholar 

  39. Rondin, L. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4, 2279 (2013)

    Article  ADS  CAS  Google Scholar 

  40. Hingant, T. et al. Measuring the magnetic moment density in patterned ultrathin ferromagnets with submicrometer resolution. Phys. Rev. Appl. 4, 014003 (2015)

    Article  ADS  Google Scholar 

  41. Blakely, R. J. Potential Theory in Gravity and Magnetic Applications (Cambridge Univ. Press, 1996)

Download references

Acknowledgements

We thank J. P. Tetienne and T. Hingant for experimental assistance in the early stages of the project. We are grateful to J. M. D. Coey for discussions. This research was supported by the European Research Council (ERC-StG-2014, IMAGINE), the European Union Seventh Framework Program (FP7/2007-2013) under the project DIADEMS, and by the French Agence Nationale de la Recherche (ANR) through project FERROMON and PIAF. This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (Labex NanoSaclay, reference: ANR-10-LABX-0035).

Author information

Authors and Affiliations

Authors

Contributions

I.G., W.A., L.J.M. and S.C. performed the NV magnetometry experiments; I.G., W.A., L.J.M. and V.J. analysed the data and performed magnetic modelling with assistance from M.V.; K.G. and C.C. fabricated the BFO sample; V.G. and S.F. performed the structural analysis and the piezoresponse force microscopy experiments; P.A. and P.M. engineered diamond tips hosting single NV defects; I.G., W.A., V.G., S.F., M.B. and V.J. wrote the manuscript. All authors contributed to the interpretation of the data and commented on the manuscript.

Corresponding author

Correspondence to V. Jacques.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks J. Mundy and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Structural properties of the magnetic thin film.

a, The surface topography of the 6 μm × 6 μm 32-nm-thick BiFeO3 (BFO) thin film grown on a DyScO3 substrate, showing single-unit-cell atomic steps. b, X-ray diffraction ω–2θ pattern of the same film displays only (00l) peaks for BFO and DyScO3 (in monoclinic notation). D (in red colour) and B (in blue colour) subscripts stand for DyScO3 and BiFeO3, respectively. c, Zoom along the (001) peak of DyScO3, showing clear Laue fringes.

Extended Data Figure 2 Reciprocal space mappings (RSMs) of the 32-nm-thick BFO film grown on SrRuO3/DyScO3.

Shown are RSMs around a, (002)D, b, (004)D, c, , d, (013)D, e, , f, (113)D, g, and h, (103)D planes of DyScO3. All the planes are indexed in monoclinic notation and the subscripts D and B correspond to DyScO3 and BFO, respectively. Two different domains can be identified for monoclinic BFO (green and blue). Qx,y and Qz indicate the in-plane and out-of-plane reciprocal space units, respectively.

Extended Data Figure 3 Determination of polarization variants in BFO thin films.

a, Local out-of-plane PFM hysteresis loop with bias voltage. d33 is the out-of-plane piezoelectric coefficient. b, Homogeneous out-of-plane PFM phase corresponding to polarization variants pointing downward in a 6 μm × 6 μm area. c, In-plane PFM phase and d, amplitude for the cantilever parallel to [100]c. e, Sketch of the PFM cantilever and the four possible in-plane variants of polarization in BFO. f, Sketch of the [110]c direction of the cantilever, with the corresponding in-plane PFM amplitude (g) and phase (h). i, Sketch of the direction of the cantilever with the corresponding in-plane PFM amplitude (j) and phase (k). All the images in c to k have been acquired in the same 3 μm × 3 μm area.

Extended Data Figure 4 Measurement of the probe-to-sample distance.

a, The scanning-NV magnetometer (‘diamond tip’) is used to measure the magnetic field (grey arrows) produced at the edges of an uniformly magnetized ferromagnetic wire (blue arrows). b, Typical Zeeman-shift profile measured by scanning the NV defect across the edges of a 500-nm-wide wire of Pt/Co(0.6nm)/AlOx with perpendicular magnetic anisotropy. The circles are experimental data and the red solid line is data fitting from which distance d is extracted24,40. We note that only the absolute value of the magnetic field is measured in this experiment.

Extended Data Figure 5 Schematic of the geometry used for the stray field calculation.

The thickness, t, of the film is divided into N monolayers of thickness a. The blue plane represents the observation plane at a distance d from the BFO film. (x, y, z) and (x′, y′, z′) represent, respectively, the coordinates of the observation point and the magnetic moment with respect to the laboratory frame. The red dashed lines indicate the remaining monolayers in the film that are not illustrated.

Extended Data Figure 6 Data fitting and uncertainty analysis.

a, Magnetic field distribution reproduced from Fig. 4a of the main text. b, The black symbols are the experimental data and the coloured solid curve is the result of a two-dimensional fit using equation (17) with d = 49 nm, meff = 0.07μB, λ = 70 nm, a = 0.396 nm, t = 32 nm and (θ, ϕ) = (128°, 80°). The linecut shown in Fig. 4c of the main text corresponds to the white dashed line in a. c, Summary of the relative uncertainties on the fitting parameter mDM for the six parameters pi = {λ, meff, t, d, θ, ϕ} (see Methods for details).

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, I., Akhtar, W., Garcia, V. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017). https://doi.org/10.1038/nature23656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23656

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing