Letter | Published:

Detection of titanium oxide in the atmosphere of a hot Jupiter

Nature volume 549, pages 238241 (14 September 2017) | Download Citation


As an exoplanet transits its host star, some of the light from the star is absorbed by the atoms and molecules in the planet’s atmosphere, causing the planet to seem bigger; plotting the planet’s observed size as a function of the wavelength of the light produces a transmission spectrum1. Measuring the tiny variations in the transmission spectrum, together with atmospheric modelling, then gives clues to the properties of the exoplanet’s atmosphere. Chemical species composed of light elements—such as hydrogen, oxygen, carbon, sodium and potassium—have in this way been detected in the atmospheres of several hot giant exoplanets2,3,4,5, but molecules composed of heavier elements have thus far proved elusive. Nonetheless, it has been predicted that metal oxides such as titanium oxide (TiO) and vanadium oxide occur in the observable regions of the very hottest exoplanetary atmospheres, causing thermal inversions on the dayside6,7. Here we report the detection of TiO in the atmosphere of the hot-Jupiter planet WASP-19b. Our combined spectrum, with its wide spectral coverage, reveals the presence of TiO (to a confidence level of 7.7σ), a strongly scattering haze (7.4σ) and sodium (3.4σ), and confirms the presence of water (7.9σ) in the atmosphere5,8.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000)

  2. 2.

    et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013)

  3. 3.

    et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. 793, L27 (2014)

  4. 4.

    , , & Exoplanetary atmospheres: chemistry, formation conditions, and habitability. Space Sci. Rev. 205, 285–348 (2016)

  5. 5.

    et al. A continuum from clear to cloudy hot-jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016)

  6. 6.

    , & A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003)

  7. 7.

    , , & A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008)

  8. 8.

    et al. An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO. Mon. Not. R. Astron. Soc. 434, 3252–3274 (2013)

  9. 9.

    et al. WASP-19b: the shortest period transiting exoplanet yet discovered. Astrophys. J. 708, 224–231 (2010)

  10. 10.

    et al. 3.6 and 4.5 μm spitzer phase curves of the highly irradiated hot Jupiters WASP-19b and HAT-P-7b. Astrophys. J. 823, 122 (2016)

  11. 11.

    , , , & Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b. Astrophys. J. 806, 146 (2015)

  12. 12.

    et al. Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. Astrophys. J. 822, L4 (2016)

  13. 13.

    et al. Regaining the FORS: making optical ground-based transmission spectroscopy of exoplanets with VLT+ FORS2 possible again. Proc. SPIE 99082, (2016)

  14. 14.

    et al. Potassium detection in the clear atmosphere of a hot-Jupiter-FORS2 transmission spectroscopy of WASP-17b. Astron. Astrophys. 596, A47 (2016)

  15. 15.

    et al. Probing the atmosphere of a sub-Jovian planet orbiting a cool dwarf. Mon. Not. R. Astron. Soc. 468, 3123–3134 (2017)

  16. 16.

    & Analytic light curves for planetary transit searches. Astrophys. J. 580, L171 (2002)

  17. 17.

    et al. A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. Mon. Not. R. Astron. Soc. 419, 2683–2694 (2012)

  18. 18.

    et al. Efficient identification of exoplanetary transit candidates from Super-WASP light curves. Mon. Not. R. Astron. Soc. 380, 1230–1244 (2007)

  19. 19.

    et al. Probing the haze in the atmosphere of HD 189733b with Hubble Space Telescope/WFC3 transmission spectroscopy. Mon. Not. R. Astron. Soc. 422, 753–760 (2012)

  20. 20.

    et al. Effect of stellar spots on high-precision transit light-curve. Astron. Astrophys. 556, A19 (2013)

  21. 21.

    et al. Impact of occultations of stellar active regions on transmission spectra: can occultation of a plage mimic the signature of a blue sky? Astron. Astrophys. 568, A99 (2014)

  22. 22.

    & HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water. Mon. Not. R. Astron. Soc. 469, 1979–1996 (2017)

  23. 23.

    C/O ratio as a dimension for characterizing exoplanetary atmospheres. Astrophys. J. 758, 36 (2012)

  24. 24.

    et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009)

  25. 25.

    ., ., & Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008)

  26. 26.

    et al. Successful commissioning of FORS1—the first optical instrument on the VLT. ESO Messenger 94, 1–6 (1998)

  27. 27.

    et al. Regaining the FORS: optical ground-based transmission spectroscopy of the exoplanet WASP-19b with VLT + FORS2. Astron. Astrophys. 576, L11 (2015)

  28. 28.

    An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacif. 98, 609–617 (1986)

  29. 29.

    et al. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b. Astron. Astrophys. 587, A67 (2016)

  30. 30.

    et al. VLT FORS2 comparative transmission spectroscopy: detection of Na in the atmosphere of WASP-39b from the ground. Astrophys. J. 832, 191 (2016)

  31. 31.

    et al. VLT/FORS2 comparative transmission spectroscopy II: confirmation of a cloud deck and Rayleigh scattering in WASP-31b, but no potassium? Mon. Not. R. Astron. Soc. 467, 4591–4605 (2017)

  32. 32.

    & Gaussian Processes for Machine Learning (MIT Press, 2006)

  33. 33.

    Detailed effects of limb darkening upon light and velocity curves of close binary systems. Harvard College Observ. Circular 454, 1–12 (1950)

  34. 34.

    et al. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

  35. 35.

    , & New limb-darkening coefficients for Phoenix/1d model atmospheres-II. Calculations for 5000 K Teff 10,000 K Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems. Astron. Astrophys. 552, A16 (2013)

  36. 36.

    & A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

  37. 37.

    ., ., & Bayesian Data Analysis vol. 2 (Chapman and Hall, 2014)

  38. 38.

    et al. Improved spectroscopic parameters for transiting planet hosts. Astrophys. J. 757, 161 (2012)

  39. 39.

    , & Transits and starspots in the WASP-19 planetary system. Mon. Not. R. Astron. Soc. 428, 3671–3679 (2013)

  40. 40.

    et al. Physical properties, transmission and emission spectra of the WASP-19 planetary system from multi-colour photometry. Mon. Not. R. Astron. Soc. 436, 2–18 (2013)

  41. 41.

    et al. Exoplanet transit spectroscopy using WFC3: WASP-12b, WASP-17b, and WASP-19b. Astrophys. J. 779, 128 (2013)

  42. 42.

    et al. SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. Astron. Astrophys. 549, A35 (2013)

  43. 43.

    , , & Water vapor in the spectrum of the extrasolar planet HD 189733b. I. the transit. Astrophys. J. 791, 55 (2014)

  44. 44.

    & A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009)

  45. 45.

    et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

  46. 46.

    & ExoMol: molecular line lists for exoplanet and other atmospheres. Mon. Not. R. Astron. Soc. 425, 21–33 (2012)

  47. 47.

    & Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres. Mon. Not. R. Astron. Soc. 458, 1427–1449 (2016)

  48. 48.

    et al. Studying the atmosphere of the exoplanet HAT-P-7b via secondary eclipse measurements with EPOXI, Spitzer, and Kepler. Astrophys. J. 710, 97–104 (2010)

  49. 49.

    et al. New section of the HITRAN database: collision-induced absorption (CIA). J. Quant. Spectrosc. Radiat. Transf. 113, 1276–1285 (2012)

  50. 50.

    & Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses. Mon. Not. R. Astron. Soc. 384, 449–463 (2008)

  51. 51.

    , & MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009)

  52. 52.

    , , & Importance nested sampling and the MultiNest algorithm. Preprint at (2013)

  53. 53.

    et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014)

  54. 54.

    Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008)

  55. 55.

    , , , & Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. Astrophys. J. 807, 183 (2015)

  56. 56.

    et al. Retrieval of atmospheric properties of cloudy L dwarfs. Mon. Not. R. Astron. Soc. 470, 1177–1197 (2017)

  57. 57.

    & The theory of transmission spectra revisited: a semi-analytical method for analyzing WFC3 data and an unresolved challenge. Mon. Not. R. Astron. Soc. 470, 2972–2981 (2017)

Download references


This work is based on observations made with the FORS2 instrument on the European Southern Observatory (ESO)’s VLT. We thank staff astronomers J. Anderson and J. Smoker for performing some of the observations. E.S. acknowledges support from the ESO through the studentship programme. R.J.M. and S.G. acknowledge financial support from the UK Science and Technology Facilities Council (STFC) towards their doctoral programmes. M.O. acknowledges research funding from the Deutsche Forschungsgemeinschaft (DFG), grant OS 508/1-1, as well as support from the Fundação para a Ciência e a Tecnologia (FCT) through national funds and from FEDER through COMPETE2020 from the following grants: UID/FIS/04434/2013 and POCI-01-0145-FEDER-007672; and PTDC/FIS-AST/1526/2014 and POCI-01-0145-FEDER-016886. We thank the Spanish Ministry of Education and Science (MEC; grants AYA2015-71718-R and ESP2015-65712-C5-5-R) for support during the development of this work. We also thank the referees for their comments, which improved the manuscript.

Author information


  1. European Southern Observatory, Alonso de Córdova 3107, Santiago, Chile

    • Elyar Sedaghati
    •  & Henri M. J. Boffin
  2. Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstrasse 2, 12489 Berlin, Germany

    • Elyar Sedaghati
    •  & Heike Rauer
  3. Zentrum für Astronomie und Astrophysik, TU Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany

    • Elyar Sedaghati
    •  & Heike Rauer
  4. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

    • Ryan J. MacDonald
    • , Siddharth Gandhi
    •  & Nikku Madhusudhan
  5. Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK

    • Neale P. Gibson
  6. Institut für Astrophysik, Georg-August Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

    • Mahmoudreza Oshagh
  7. Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

    • Mahmoudreza Oshagh
  8. Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, 18080 Granada, Spain

    • Antonio Claret


  1. Search for Elyar Sedaghati in:

  2. Search for Henri M. J. Boffin in:

  3. Search for Ryan J. MacDonald in:

  4. Search for Siddharth Gandhi in:

  5. Search for Nikku Madhusudhan in:

  6. Search for Neale P. Gibson in:

  7. Search for Mahmoudreza Oshagh in:

  8. Search for Antonio Claret in:

  9. Search for Heike Rauer in:


E.S. and H.M.J.B. led the scientific proposal, observational campaigns, data reduction and analysis up to the production of transmission spectra. R.J.M. conducted the atmospheric retrieval and S.G. generated the absorption cross-sections, both under the supervision of N.M., who planned and oversaw the atmospheric analyses and theoretical interpretation. N.P.G. wrote the python modules for the Gaussian process and the Monte Carlo Markov Chain analysis. M.O. analysed the impact of unocculted stellar active regions. A.C. calculated the theoretical limb-darkening coefficients for the specific bandpasses. H.R. provided feedback on the manuscript and is involved in the supervision of E.S. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Elyar Sedaghati.

Reviewer Information Nature thanks K. Heng and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

About this article

Publication history






Further reading

  • An absolute sodium abundance for a cloud-free ‘hot Saturn’ exoplanet

    • N. Nikolov
    • , D. K. Sing
    • , J. J. Fortney
    • , J. M. Goyal
    • , B. Drummond
    • , T. M. Evans
    • , N. P. Gibson
    • , E. J. W. De Mooij
    • , Z. Rustamkulov
    • , H. R. Wakeford
    • , B. Smalley
    • , A. J. Burgasser
    • , C. Hellier
    • , Ch. Helling
    • , N. J. Mayne
    • , N. Madhusudhan
    • , T. Kataria
    • , J. Baines
    • , A. L. Carter
    • , G. E. Ballester
    • , J. K. Barstow
    • , J. McCleery
    •  & J. J. Spake

    Nature (2018)


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.