Epitaxy of advanced nanowire quantum devices

Published online:


Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin–orbit coupling is brought into contact with a superconductor1,2. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation3,4,5,6,7,8. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor–semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov–Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin–orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor–semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    et al. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010)

  2. 2.

    et al. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010)

  3. 3.

    et al. Non-Abelian statistics and topological quantum information processing in 1D wire networks. Nat. Phys. 7, 412–417 (2011)

  4. 4.

    et al. Flux-controlled quantum computation with Majorana fermions. Phys. Rev. B 88, 035121 (2013)

  5. 5.

    et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016)

  6. 6.

    et al. Majorana box qubits. New J. Phys. 19, 012001 (2017)

  7. 7.

    & Teleportation-based quantum information processing with Majorana zero modes. Phys. Rev. B 94, 235446 (2016)

  8. 8.

    et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017)

  9. 9.

    et al. Spin-orbit interaction in InSb nanowires. Phys. Rev. B 91, 201413 (2015)

  10. 10.

    et al. Conductance quantization at zero magnetic field in InSb nanowires. Nano Lett. 16, 3482–3486 (2016)

  11. 11.

    et al. Ballistic Majorana nanowire devices. Preprint at (2016)

  12. 12.

    et al. Observation of conductance quantization in InSb nanowire networks. Nano Lett. (2017)

  13. 13.

    et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003–1007 (2012)

  14. 14.

    et al. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557–1562 (2016)

  15. 15.

    et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016)

  16. 16.

    et al. Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks. Phys. Rev. B 93, 155402 (2016)

  17. 17.

    et al. Gold-free ternary III-V antimonide nanowire arrays on silicon: twin-free down to the first bilayer. Nano Lett. 14, 326–332 (2014)

  18. 18.

    et al. From InSb nanowires to nanocubes: looking for the sweet spot. Nano Lett. 12, 1794–1798 (2012)

  19. 19.

    et al. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch. Nanotechnology 20, 495606 (2009)

  20. 20.

    et al. Droplet dynamics in controlled InAs nanowire interconnections. Nano Lett. 13, 2676–2681 (2013)

  21. 21.

    et al. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs. Nano Lett. 13, 5190–5196 (2013)

  22. 22.

    et al. Crystal phase transformation in self-assembled InAs nanowire junctions on patterned Si substrates. Nano Lett. 16, 1933–1941 (2016)

  23. 23.

    et al. Rationally designed single-crystalline nanowire networks. Adv. Mater. 26, 4875–4879 (2014)

  24. 24.

    et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015)

  25. 25.

    et al. Hard superconducting gap in InSb nanowires. Nano Lett. 17, 2690–2696 (2017)

  26. 26.

    et al. Towards high mobility InSb nanowire devices. Nanotechnology 26, 215202 (2015)

  27. 27.

    et al. Mesoscopic decoherence in Aharonov–Bohm rings. Phys. Rev. B 64, 045327 (2001)

  28. 28.

    Quantum transport in semiconductor–superconductor microjunctions. Phys. Rev. B 46, 12841 (1992)

  29. 29.

    & Chemical etching characteristics of (001) InP. J. Electrochem. Soc. 128, 1342–1349 (1981)

  30. 30.

    et al. Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009)

  31. 31.

    et al. Electrical and surface properties of InAs/InSb nanowires cleaned by atomic hydrogen. Nano Lett. 15, 4865–4875 (2015)

  32. 32.

    et al. Statistical significance of the fine structure in the frequency spectrum of Aharonov–Bohm conductance oscillations. Phys. Rev. B 69, 035308 (2004)

  33. 33.

    Bilayer taper etching of field oxides and passivation layers. J. Electrochem. Soc. 127, 2687–2693 (1980)

Download references


We acknowledge N. Wilson for the assistance at University of California, Santa Barbara. This work has been supported by the European Research Council (ERC HELENA 617256 and Synergy), the Dutch Organization for Scientific Research (NWO-VICI 700.10.441), the Foundation for Fundamental Research on Matter (FOM) and Microsoft Corporation Station-Q. We acknowledge Solliance, a solar energy R&D initiative of ECN, TNO, Holst, TU/e, imec and Forschungszentrum Jülich, and the Dutch province of Noord-Brabant for funding the TEM facility. We thank the Office of Naval Research (ONR) for financial support. The work at University of California, Santa Barbara was supported in part by Microsoft Research. We also acknowledge the use of facilities within the National Science Foundation Materials Research and Science and Engineering Center (DMR 11–21053) at the University of California, Santa Barbara and the LeRoy Eyring Center for Solid State Science at Arizona State University.

Author information

Author notes

    • Sasa Gazibegovic
    • , Diana Car
    •  & Hao Zhang

    These authors contributed equally to this work.


  1. QuTech and Kavli Institute of NanoScience, Delft University of Technology, 2600 GA Delft, The Netherlands

    • Sasa Gazibegovic
    • , Diana Car
    • , Hao Zhang
    • , Stijn C. Balk
    • , Michiel W. A. de Moor
    • , Maja C. Cassidy
    • , Di Xu
    • , Guanzhong Wang
    • , Roy L. M. Op het Veld
    • , Kun Zuo
    • , Yoram Vos
    • , Jie Shen
    • , Daniël Bouman
    • , Leo P. Kouwenhoven
    •  & Erik P. A. M. Bakkers
  2. Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

    • Sasa Gazibegovic
    • , Diana Car
    • , Roy L. M. Op het Veld
    • , Petrus J. van Veldhoven
    • , Sebastian Koelling
    • , Marcel A. Verheijen
    •  & Erik P. A. M. Bakkers
  3. Materials Department, University of California, Santa Barbara, California 93106, USA

    • John A. Logan
    • , Borzoyeh Shojaei
    • , Daniel Pennachio
    •  & Chris J. Palmstrøm
  4. TNO Technical Sciences, Nano-Instrumentation Department, 2600 AD Delft, The Netherlands

    • Rudi Schmits
  5. Center for Quantum Devices and Station-Q Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

    • Peter Krogstrup
  6. California NanoSystems Institute, University of California, Santa Barbara, California 93106, USA

    • Joon Sue Lee
    •  & Chris J. Palmstrøm
  7. Philips Innovation Services Eindhoven, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands

    • Marcel A. Verheijen
  8. Microsoft Station-Q at Delft University of Technology, 2600 GA Delft, The Netherlands

    • Leo P. Kouwenhoven
  9. Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA

    • Chris J. Palmstrøm


  1. Search for Sasa Gazibegovic in:

  2. Search for Diana Car in:

  3. Search for Hao Zhang in:

  4. Search for Stijn C. Balk in:

  5. Search for John A. Logan in:

  6. Search for Michiel W. A. de Moor in:

  7. Search for Maja C. Cassidy in:

  8. Search for Rudi Schmits in:

  9. Search for Di Xu in:

  10. Search for Guanzhong Wang in:

  11. Search for Peter Krogstrup in:

  12. Search for Roy L. M. Op het Veld in:

  13. Search for Kun Zuo in:

  14. Search for Yoram Vos in:

  15. Search for Jie Shen in:

  16. Search for Daniël Bouman in:

  17. Search for Borzoyeh Shojaei in:

  18. Search for Daniel Pennachio in:

  19. Search for Joon Sue Lee in:

  20. Search for Petrus J. van Veldhoven in:

  21. Search for Sebastian Koelling in:

  22. Search for Marcel A. Verheijen in:

  23. Search for Leo P. Kouwenhoven in:

  24. Search for Chris J. Palmstrøm in:

  25. Search for Erik P. A. M. Bakkers in:


S.G., D.C., J.A.L., C.J.P. and E.P.A.M.B. carried out the material synthesis. H.Z. and M.W.A.M. fabricated the devices and performed the transport measurements and data analysis. S.C.B., M.C.C. and R.S. carried out the substrate preparation. D.X. and G.W. fabricated the hard-gap devices and contributed to the measurement. S.G. and R.L.M.O.H.V. did the nanowire manipulation for the TEM analysis and transport measurements. M.A.V. performed TEM analysis. B.S., D.P. and J.S.L. contributed to the experiments at University of California, Santa Barbara. S.K. prepared the lamellae for TEM analysis. J.S. and D.B. contributed to the hard-gap device fabrication. K.Z. and Y.V. contributed to the Aharonov–Bohm device fabrication and data analysis. P.J.V.V. supported work with the MOVPE reactor. E.P.A.M.B., C.J.P. and P.K. provided key suggestions on the experiments. E.P.A.M.B., C.J.P. and L.P.K. supervised the projects. All authors contributed to the writing of the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Erik P. A. M. Bakkers.

Reviewer Information Nature thanks J. Alicea and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.