Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ram-pressure feeding of supermassive black holes


When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus1,2. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy3, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters4. Here we report that six out of a sample of seven ‘jellyfish’ galaxies—galaxies with long ‘tentacles’ of material that extend for dozens of kiloparsecs beyond the galactic disks5,6—host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MUSE stellar velocity maps and Hα maps for JO201, JO204 and JW100.
Figure 2: MUSE stellar velocity map and Hα map for JO206, JO135, JO194 and JO175.
Figure 3: Diagnostic diagrams and maps for all jellyfish galaxies.
Figure 4: Differential velocity versus cluster-centric distance.


  1. 1

    Krawczynski, H. & Treister, E. Active galactic nuclei the physics of individual sources and the cosmic history of formation and evolution. Front. Phys. 8, 609–629 (2013)

    Article  Google Scholar 

  2. 2

    Heckman, T. M. & Best, P. N. The coevolution of galaxies and supermassive black holes: insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 52, 589–660 (2014)

    ADS  Article  Google Scholar 

  3. 3

    Boselli, A. & Gavazzi, G. Environmental effects on late-type galaxies in nearby clusters. Publ. Astron. Soc. Pacif. 118, 517–559 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Gunn, J. E. & Gott, J. R. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972)

    ADS  Article  Google Scholar 

  5. 5

    Fumagalli, M. et al. MUSE sneaks a peek at extreme ram-pressure stripping events — I. A kinematic study of the archetypal galaxy ESO137–001. Mon. Not. R. Astron. Soc. 445, 4335–4344 (2014)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Ebeling, H. et al. Jellyfish: evidence of extreme ram-pressure stripping in massive galaxy clusters. Astrophys. J. 781, L40–L44 (2014)

    ADS  Article  Google Scholar 

  7. 7

    Magorrian, J. et al. The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998)

    ADS  Article  Google Scholar 

  8. 8

    Gültekin, K. et al. The M-σ and M-L relations in galactic bulges, and determinations of their intrinsic scatter. Astrophys. J. 698, 198–221 (2009)

    ADS  Article  Google Scholar 

  9. 9

    Sanders, D. et al. Ultraluminous infrared galaxies and the origin of quasars. Astrophys. J. 325, 74–91 (1988)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Hopkins, P. & Hernquist, L. A characteristic division between the fueling of quasars and Seyferts: five simple tests. Astrophys. J. 694, 599–609 (2009)

    ADS  Article  Google Scholar 

  11. 11

    Moore, B. et al. Galaxy harassment and the evolution of clusters of galaxies. Nature 379, 613–616 (1996)

    ADS  CAS  Article  Google Scholar 

  12. 12

    White, S. D. M. & Rees, M. J. Core condensation in heavy halos — a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    ADS  Article  Google Scholar 

  13. 13

    Bekki, K. & Couch, W. Starbursts from the strong compression of galactic molecular clouds due to the high pressure of the intracluster medium. Astrophys. J. 596, L13–L16 (2003)

    ADS  Article  Google Scholar 

  14. 14

    Poggianti, B. M. et al. Jellyfish galaxy candidates at low redshift. Astron. J. 151, 78–97 (2016)

    ADS  Article  Google Scholar 

  15. 15

    Poggianti, B. M . et al. GASP I: Gas stripping phenomena in galaxies with MUSE. Astrophys. J. 844, 48 ( 2017)

    ADS  Article  Google Scholar 

  16. 16

    Bellhouse, C. et al. GASP II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201. Astrophys. J. 844, 49 (2017)

    ADS  Article  Google Scholar 

  17. 17

    Gullieuszik, M. et al. GASP IV: A MUSE view of extreme ram-pressure stripping in the plane of the sky: the case of jellyfish galaxy JO204. Astrophys. J. (in the press)

  18. 18

    Kewley, L. J. et al. Optical classification of southern warm infrared galaxies. Astrophys. J. Suppl. Ser. 132, 37 (2001)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kauffmann, G. et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 346, 1055 (2003)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Sharp, R. G. & Bland-Hawthorn, J. Three-dimensional integral field observations of 10 galactic winds. I. Extended phase (≥ 10 Myr) of mass/energy injection before the wind blows. Astrophys. J. 711, 818 (2010)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Kewley, L. J. et al. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 372, 961–976 (2006)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Marziani, P. et al. Emission line galaxies and active galactic nuclei in WINGS clusters. Astron. Astrophys. 599, A83 (2017)

    Article  Google Scholar 

  23. 23

    Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Schulz, S. & Struck, C. Multi stage three-dimensional sweeping and annealing of disc galaxies in clusters. Mon. Not. R. Astron. Soc. 328, 185–202 (2001)

    ADS  Article  Google Scholar 

  25. 25

    Tonnesen, S. & Bryan, G. L. Gas stripping in simulated galaxies with a multiphase interstellar medium. Astrophys. J. 694, 789–804 (2009)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Tonnesen, S. & Bryan, G. L. Star formation in ram pressure stripped galactic tails. Mon. Not. R. Astron. Soc. 422, 1609–1624 (2012)

    ADS  Article  Google Scholar 

  27. 27

    Ramos-Martinez, M. & Gomez, G. C. MHD simulations of ram pressure stripping of disk galaxies, in Galaxies at high redshift and their evolution over cosmic time. IAU Symp. 319, 143–143 (2016)

    ADS  Google Scholar 

  28. 28

    Bower, R. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Jaffé, Y. et al. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies. Mon. Not. R. Astron. Soc. 448, 1715–1728 (2015)

    ADS  Article  Google Scholar 

  30. 30

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    ADS  Article  Google Scholar 

  31. 31

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    ADS  Article  Google Scholar 

  32. 32

    Moretti, A. et al. OmegaWINGS: spectroscopy in the outskirts of local clusters of galaxies. Astron. Astrophys. 599, A81 (2017)

    Article  Google Scholar 

  33. 33

    Bacon, R. et al. The MUSE second-generation VLT instrument. Proc. SPIE 7735, 773508 (2010)

    Article  Google Scholar 

  34. 34

    Fossati, M. et al. MUSE sneaks a peek at extreme ram-pressure stripping events — II. The physical properties of the gas tail of ESO137-001. Mon. Not. R. Astron. Soc. 455, 2028–2041 (2016)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Boselli, A. et al. Spectacular tails of ionized gas in the Virgo cluster galaxy NGC 4569. Astron. Astrophys. 587, A68 (2016)

    Article  Google Scholar 

  36. 36

    Fritz, J. et al. GASP III. JO36: a case of multiple environmental effects at play? Preprint at (2017)

  37. 37

    Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Ferland, G. J. et al. The 2013 release of CLOUDY. Rev. Mex. Astron. Astrofis. 49, 137–163 (2013)

    ADS  CAS  Google Scholar 

  39. 39

    Cappellari, M. & Emsellem, E. Parametric recovery of line-of-sight velocity distributions from absorption-line spectra of galaxies via penalized likelihood. Publ. Astron. Soc. Pacif. 116, 138–147 (2004)

    ADS  Article  Google Scholar 

  40. 40

    Vazdekis, A. et al. Evolutionary stellar population synthesis with MILES — I. The base models and a new line index system. Mon. Not. R. Astron. Soc. 404, 1639–1671 (2010)

    ADS  Google Scholar 

  41. 41

    Cappellari, M. & Copin, Y. Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations. Mon. Not. R. Astron. Soc. 342, 345–354 (2003)

    ADS  Article  Google Scholar 

  42. 42

    Diehl, S. & Statler, T. S. Adaptive binning of X-ray data with weighted Voronoi tessellations. Mon. Not. R. Astron. Soc. 368, 497–510 (2006)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Sarzi, M. et al. The SAURON project — XVI. On the sources of ionization for the gas in elliptical and lenticular galaxies. Mon. Not. R. Astron. Soc. 402, 2187–2210 (2010)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Yan, R. & Blanton, M. R. The nature of LINER-like emission in red galaxies. Astrophys. J. 747, 61 (2012)

    ADS  Article  Google Scholar 

  45. 45

    Singh, R. et al. The nature of LINER galaxies. Ubiquitous hot old stars and rare accreting black holes. Astron. Astrophys. 558, A43 (2013)

    Article  Google Scholar 

  46. 46

    Belfiore, F. et al. SDSS IV MaNGA — spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs. Mon. Not. R. Astron. Soc. 461, 3111–3134 (2016)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Allen, M. G. et al. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Owers, M. et al. Shocking tails in the major merger Abell 2744. Astrophys. J. 750, L23 (2012)

    ADS  Article  Google Scholar 

  49. 49

    Cava, A. et al. WINGS-SPE spectroscopy in the WIde-field Nearby Galaxy-cluster Survey. Astron. Astrophys. 495, 707–719 (2009)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Wang, S. et al. CHANDRA ACIS survey of X-ray point sources: the source catalog. Astrophys. J. Suppl. Ser. 224, 40 (2016)

    ADS  Article  Google Scholar 

Download references


This work is based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 196.B-0578. We thank M. Fossati and D. Wilman for developing and making available KUBEVIZ. We acknowledge financial support from PRIN-INAF 2014. B.V. acknowledges support from an Australian Research Council Discovery Early Career Researcher Award (PD0028506). S.T. was supported by an Alvin E. Nashman Fellowship in Theoretical Astrophysics. This work was co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND).

Author information




All authors contributed to the interpretation of the observations and the writing of the paper. B.M.P. led the project and performed the data analysis. Y.J. performed the phase-space analysis. A.M. carried out the stellar kinematics analysis. M.G. did the data reduction. M.R. contributed to the data analysis. S.T. provided the discussion on simulations. J.F. did the SINOPSIS analysis. D.B. and G.F. helped in the preparation of the observations. B.V. performed a comparison of the stellar population analysis and prepared the GASP web page. C.B. performed the two-component KUBEVIZ analysis of JO201. G.H. did the data reduction for JO201. A.O. selected the JW100 target.

Corresponding author

Correspondence to Bianca M. Poggianti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Summary diagnostic diagrams.

Line ratio diagrams summarizing our findings, showing the location of each galaxy in two different diagnostics diagrams integrating the spectrum over the spatial region (identified from Fig. 3) dominated by AGN emission (JO201, JO204, JW100, JO206, JO135), by LINER emission (JO194) and over the central 7 × 7 brightest spaxels in the case of JO175. Here we present both the [N ii]6,583/Hα (left) and the [S ii]6,717/Hα (right) diagrams, to illustrate the good agreement between the two and also to display JW100 whose [N ii] line cannot be measured. Lines as in Fig. 3. The two components in JO201, JO204 and JW100 are shown as separate points. The error bars are computed propagating the errors on the line fluxes obtained by KUBEVIZ, scaled to achieve a reduced χ2 = 1 as described elsewhere15.

Extended Data Table 1 Properties of GASP jellyfish galaxies

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poggianti, B., Jaffé, Y., Moretti, A. et al. Ram-pressure feeding of supermassive black holes. Nature 548, 304–309 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing