Letter | Published:

Distinguishing spin-aligned and isotropic black hole populations with gravitational waves

Nature volume 548, pages 426429 (24 August 2017) | Download Citation

Abstract

The direct detection of gravitational waves1,2,3,4 from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations5,6,7,8,9 (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit10,11,12,13,14. The best-measured combination of spin parameters3,4 for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the ‘effective’ spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections15, this odds ratio decreases to 2.9 × 10−7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

  2. 2.

    et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)

  3. 3.

    et al. Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016)

  4. 4.

    et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)

  5. 5.

    & Primordial black holes in globular clusters. Nature 364, 423–425 (1993)

  6. 6.

    & Black hole mergers in the universe. Astrophys. J. 528, L17–L20 (2000)

  7. 7.

    et al. Binary black hole mergers from globular clusters: implications for Advanced LIGO. Phys. Rev. Lett. 115, 051101 (2015)

  8. 8.

    , & Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017)

  9. 9.

    , , , & Illuminating black hole binary formation channels with spins in Advanced LIGO. Astrophys. J. 832, L2 (2016)

  10. 10.

    & The merger rate of neutron star and black hole binaries. Mon. Not. R. Astron. Soc. 260, 675–678 (1993)

  11. 11.

    , , & The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature 534, 512–515 (2016)

  12. 12.

    et al. Formation of the first three gravitational-wave observations through isolated binary evolution. Nat. Commun. 8, 14906 (2017)

  13. 13.

    & Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 458, 2634–2647 (2016)

  14. 14.

    , , , & A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016)

  15. 15.

    et al. The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys. J. 833, L1 (2016)

  16. 16.

    & The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 548, 1–34 (2015)

  17. 17.

    , , & Use of gravitational waves to probe the formation channels of compact binaries. Class. Quantum Gravity 34, 03LT01 (2017)

  18. 18.

    & The evolution of black hole mass and angular momentum. Mon. Not. R. Astron. Soc. 305, 654–660 (1999)

  19. 19.

    & The origin of black hole spin in galactic low-mass X-Ray binaries. Astrophys. J. 800, 17 (2015)

  20. 20.

    , , & GW150914: spin-based constraints on the merger time of the progenitor system. Mon. Not. R. Astron. Soc. 462, 844–849 (2016)

  21. 21.

    , & Research note: the expected spins of gravitational wave sources with isolated field binary progenitors. Preprint at (2017)

  22. 22.

    & Implications of the low binary black hole aligned spins observed by LIGO. Astrophys. J. 842, 111 (2017)

  23. 23.

    , , & Misaligned spin and orbital axes cause the anomalous precession of DI Herculis. Nature 461, 373–376 (2009)

  24. 24.

    , & Misalignment of the microquasar V4641 Sgr (SAX J1819.3−2525). Mon. Not. R. Astron. Soc. 391, L15–L18 (2008)

  25. 25.

    & The Spin of the black hole 4U 1543–47. Astrophys. J. 793, L33 (2014)

  26. 26.

    Spin-orbit misalignment in close binaries with two compact objects. Astrophys. J. 541, 319–328 (2000)

  27. 27.

    , , & Spin tilts in the double pulsar reveal supernova spin angular-momentum production. Astrophys. J. 742, 81 (2011)

  28. 28.

    , , , & Multi-timescale analysis of phase transitions in precessing black-hole binaries. Phys. Rev. D 92, 064016 (2015)

  29. 29.

    Spin-orbit resonance and the evolution of compact binary systems. Phys. Rev. D 70, 124020 (2004)

  30. 30.

    , & Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. 661, L147–L150 (2007)

  31. 31.

    et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016)

  32. 32.

    , & Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments. Mon. Not. R. Astron. Soc. (2017)

  33. 33.

    et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015)

  34. 34.

    , & Inferring the eccentricity distribution. Astrophys. J. 725, 2166–2175 (2010)

  35. 35.

    Parameter estimation on gravitational waves from multiple coalescing binaries. Phys. Rev. D 81, 084029 (2010)

  36. 36.

    , & Are LIGO’s black holes made from smaller black holes? Astrophys. J. 840, L24 (2017)

  37. 37.

    & Are merging black holes born from stellar collapse or previous mergers? Phys. Rev. D 95, 124046 (2017)

  38. 38.

    et al. GW150914: first results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 93, 122003 (2016)

  39. 39.

    et al. Effects of waveform model systematics on the interpretation of GW150914. Classic. Quantum Grav. 34, 104002 (2017)

  40. 40.

    et al. Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence. Phys. Rev. D 94, 064035 (2016)

  41. 41.

    , , & Julia: a fast dynamic language for technical computing. Preprint at (2012)

  42. 42.

    , & The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

  43. 43.

    et al. SciPy: open source scientific tools for Python, (2001; accessed 24 May 2017)

  44. 44.

    Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007)

  45. 45.

    & IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007)

Download references

Acknowledgements

We thank R. O’Shaughnessy, C. Berry, D. Gerosa and S. Vitale for discussions and comments on this work. W.M.F., S.S., I.M. and A.V. were supported in part by the STFC. M.C.M. acknowledges support of the University of Birmingham Institute for Advanced Study Distinguished Visiting Fellows programme. S.S. and I.M. acknowledge support from the National Science Foundation under grant number NSF PHY11-25915.

Author information

Affiliations

  1. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

    • Will M. Farr
    • , Simon Stevenson
    • , Ilya Mandel
    •  & Alberto Vecchio
  2. Kavli Institute for Theoretical Physics, Santa Barbara, California 93106, USA

    • Simon Stevenson
    •  & Ilya Mandel
  3. Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, Maryland 20742-2421, USA

    • M. Coleman Miller
  4. Enrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA

    • Ben Farr

Authors

  1. Search for Will M. Farr in:

  2. Search for Simon Stevenson in:

  3. Search for M. Coleman Miller in:

  4. Search for Ilya Mandel in:

  5. Search for Ben Farr in:

  6. Search for Alberto Vecchio in:

Contributions

All authors contributed at all stages to the work presented here.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Will M. Farr.

Reviewer Information Nature thanks I. Bartos and S. Sigurdsson for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature23453

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.