Distinguishing spin-aligned and isotropic black hole populations with gravitational waves


The direct detection of gravitational waves1,2,3,4 from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations5,6,7,8,9 (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit10,11,12,13,14. The best-measured combination of spin parameters3,4 for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the ‘effective’ spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections15, this odds ratio decreases to 2.9 × 10−7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Approximate posteriors on the effective spin χeff for the four likely gravitational wave detections.
Figure 2: Models for the population distribution of χeff, p(χeff).
Figure 3: Odds ratios for our models, p(d | model)/p(d | LI).
Figure 4: Distribution of odds ratios predicted with 10 additional observations.


  1. 1

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    ADS  MathSciNet  CAS  Google Scholar 

  2. 2

    Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Abbott, B. P. et al. Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016)

    Google Scholar 

  4. 4

    Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Sigurdsson, S. & Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993)

    ADS  Article  Google Scholar 

  6. 6

    Portegies Zwart, S. F. & McMillan, S. L. W. Black hole mergers in the universe. Astrophys. J. 528, L17–L20 (2000)

    ADS  Article  Google Scholar 

  7. 7

    Rodriguez, C. L. et al. Binary black hole mergers from globular clusters: implications for Advanced LIGO. Phys. Rev. Lett. 115, 051101 (2015)

    ADS  Article  Google Scholar 

  8. 8

    Stone, N. C., Metzger, B. D. & Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 464, 946–954 (2017)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Rodriguez, C. L., Zevin, M., Pankow, C., Kalogera, V. & Rasio, F. A. Illuminating black hole binary formation channels with spins in Advanced LIGO. Astrophys. J. 832, L2 (2016)

    ADS  Article  Google Scholar 

  10. 10

    Tutukov, A. V. & Yungelson, L. R. The merger rate of neutron star and black hole binaries. Mon. Not. R. Astron. Soc. 260, 675–678 (1993)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Belczynski, K., Holz, D. E., Bulik, T. & O’Shaughnessy, R. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature 534, 512–515 (2016)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Stevenson, S. et al. Formation of the first three gravitational-wave observations through isolated binary evolution. Nat. Commun. 8, 14906 (2017)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Mandel, I. & de Mink, S. E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 458, 2634–2647 (2016)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M. & Moriya, T. J. A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016)

    ADS  Article  Google Scholar 

  15. 15

    Abbott, B. P. et al. The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys. J. 833, L1 (2016)

    ADS  Article  Google Scholar 

  16. 16

    Miller, M. C. & Miller, J. M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 548, 1–34 (2015)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  17. 17

    Vitale, S., Lynch, R., Sturani, R. & Graff, P. Use of gravitational waves to probe the formation channels of compact binaries. Class. Quantum Gravity 34, 03LT01 (2017)

    Article  Google Scholar 

  18. 18

    King, A. R. & Kolb, U. The evolution of black hole mass and angular momentum. Mon. Not. R. Astron. Soc. 305, 654–660 (1999)

    ADS  Article  Google Scholar 

  19. 19

    Fragos, T. & McClintock, J. E. The origin of black hole spin in galactic low-mass X-Ray binaries. Astrophys. J. 800, 17 (2015)

    ADS  Article  Google Scholar 

  20. 20

    Kushnir, D., Zaldarriaga, M., Kollmeier, J. A. & Waldman, R. GW150914: spin-based constraints on the merger time of the progenitor system. Mon. Not. R. Astron. Soc. 462, 844–849 (2016)

    ADS  Article  Google Scholar 

  21. 21

    Zaldarriaga, M., Kushnir, D. & Kollmeier, J. A. Research note: the expected spins of gravitational wave sources with isolated field binary progenitors. Preprint at https://arxiv.org/abs/1702.00885 (2017)

  22. 22

    Hotokezaka, K. & Piran, T. Implications of the low binary black hole aligned spins observed by LIGO. Astrophys. J. 842, 111 (2017)

    ADS  Article  Google Scholar 

  23. 23

    Albrecht, S., Reffert, S., Snellen, I. A. G. & Winn, J. N. Misaligned spin and orbital axes cause the anomalous precession of DI Herculis. Nature 461, 373–376 (2009)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Martin, R. G., Reis, R. C. & Pringle, J. E. Misalignment of the microquasar V4641 Sgr (SAX J1819.3−2525). Mon. Not. R. Astron. Soc. 391, L15–L18 (2008)

    ADS  Google Scholar 

  25. 25

    Morningstar, W. R. & Miller, J. M. The Spin of the black hole 4U 1543–47. Astrophys. J. 793, L33 (2014)

    ADS  Article  Google Scholar 

  26. 26

    Kalogera, V. Spin-orbit misalignment in close binaries with two compact objects. Astrophys. J. 541, 319–328 (2000)

    ADS  Article  Google Scholar 

  27. 27

    Farr, W. M., Kremer, K., Lyutikov, M. & Kalogera, V. Spin tilts in the double pulsar reveal supernova spin angular-momentum production. Astrophys. J. 742, 81 (2011)

    ADS  Article  Google Scholar 

  28. 28

    Gerosa, D., Kesden, M., Sperhake, U., Berti, E. & O’Shaughnessy, R. Multi-timescale analysis of phase transitions in precessing black-hole binaries. Phys. Rev. D 92, 064016 (2015)

    ADS  Article  Google Scholar 

  29. 29

    Schnittman, J. D. Spin-orbit resonance and the evolution of compact binary systems. Phys. Rev. D 70, 124020 (2004)

    ADS  Article  Google Scholar 

  30. 30

    Bogdanovic´, T., Reynolds, C. S. & Miller, M. C. Alignment of the spins of supermassive black holes prior to coalescence. Astrophys. J. 661, L147–L150 (2007)

    ADS  Article  Google Scholar 

  31. 31

    Abbott, B. P. et al. Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116, 241102 (2016)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  32. 32

    Stevenson, S., Berry, C. P. L. & Mandel, I. Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stx1764 (2017)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015)

    ADS  Article  Google Scholar 

  34. 34

    Hogg, D. W., Myers, A. D. & Bovy, J. Inferring the eccentricity distribution. Astrophys. J. 725, 2166–2175 (2010)

    ADS  Article  Google Scholar 

  35. 35

    Mandel, I. Parameter estimation on gravitational waves from multiple coalescing binaries. Phys. Rev. D 81, 084029 (2010)

    ADS  Article  Google Scholar 

  36. 36

    Fishbach, M., Holz, D. E. & Farr, B. Are LIGO’s black holes made from smaller black holes? Astrophys. J. 840, L24 (2017)

    ADS  Article  Google Scholar 

  37. 37

    Gerosa, D. & Berti, E. Are merging black holes born from stellar collapse or previous mergers? Phys. Rev. D 95, 124046 (2017)

    ADS  Article  Google Scholar 

  38. 38

    Abbott, B. P. et al. GW150914: first results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 93, 122003 (2016)

    ADS  Article  Google Scholar 

  39. 39

    Abbott, B. P. et al. Effects of waveform model systematics on the interpretation of GW150914. Classic. Quantum Grav. 34, 104002 (2017)

    ADS  Article  Google Scholar 

  40. 40

    Abbott, B. P. et al. Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence. Phys. Rev. D 94, 064035 (2016)

    ADS  Article  Google Scholar 

  41. 41

    Bezanson, J., Karpinski, S., Shah, V. B. & Edelman, A. Julia: a fast dynamic language for technical computing. Preprint at https://arxiv.org/abs/1209.5145 (2012)

  42. 42

    van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

    Article  Google Scholar 

  43. 43

    Jones, E. et al. SciPy: open source scientific tools for Python, http://www.scipy.org/ (2001; accessed 24 May 2017)

  44. 44

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007)

    Article  Google Scholar 

  45. 45

    Perez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007)

    CAS  Article  Google Scholar 

Download references


We thank R. O’Shaughnessy, C. Berry, D. Gerosa and S. Vitale for discussions and comments on this work. W.M.F., S.S., I.M. and A.V. were supported in part by the STFC. M.C.M. acknowledges support of the University of Birmingham Institute for Advanced Study Distinguished Visiting Fellows programme. S.S. and I.M. acknowledge support from the National Science Foundation under grant number NSF PHY11-25915.

Author information




All authors contributed at all stages to the work presented here.

Corresponding author

Correspondence to Will M. Farr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks I. Bartos and S. Sigurdsson for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Distributions of spin magnitudes.

See equation (1) for the definition of the ‘low’ (blue line), ‘flat’ (green line) and ‘high’ (red line) magnitude distributions. The distributions have mean spins of 0.33, 0.5 and 0.67, and standard deviations of 0.24, 0.29 and 0.24, respectively. Source data

Extended Data Figure 2 Fraction of the binary black hole population that comes from an isotropic distribution under a mixture model.

The blue dotted line shows the flat prior on the fraction fi of binary black holes that come from an isotropic distribution, under the mixture model. The three red lines show the posterior on fi after LIGO O1 and GW170104 with our various assumptions regarding black hole spin magnitudes. The solid line shows the posterior assuming that all black holes have their spin magnitude drawn from the flat distribution. The dashed line assumes the high black hole spin magnitude distribution p(a) = 2a. The dash-dotted line assumes the low distribution p(a) = 2(1 − a). For a wide range of assumptions regarding black hole spin magnitudes, the fraction coming from an isotropic distribution fi peaks at 1. Source data

Extended Data Figure 3 Effect of small spins on the ratio of isotropic and aligned models.

The blue line shows the ratio (plotted as the equivalent σ) between a model in which all systems are from an isotropic distribution and one in which all systems are aligned (σI/A), as a function of the power-law exponent α in equation (3). The top axis shows the mean spin magnitude to which the given value of α corresponds. For mean spin magnitudes of less than about 0.2, we find no evidence for either distribution over the other. Source data

Extended Data Figure 4 Distributions of χeff assuming all merging black holes have equal masses (q = 1) or a 2:1 mass ratio (q = 0.5).

The details of the distribution are sensitive to the mass ratio, but in our analysis the primarily sensitivity is to the changing sign of χeff under the isotropic models. This latter property is unchanged under changing mass ratio. Source data

Extended Data Figure 5 Widths of the 90% credible intervals for χeff for 500 binaries in a simulated detected population.

χeff is better constrained for systems with high χeff and high mass ratio. χsim and qsim are the simulated effective spin and mass ratio, respectively. Source data

Extended Data Table 1 Significance σI/A of the odds ratio between the isotropic and aligned models

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farr, W., Stevenson, S., Miller, M. et al. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves. Nature 548, 426–429 (2017). https://doi.org/10.1038/nature23453

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing