Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological quantum chemistry

An Author Correction to this article was published on 29 May 2020

Abstract

Since the discovery of topological insulators and semimetals, there has been much research into predicting and experimentally discovering distinct classes of these materials, in which the topology of electronic states leads to robust surface states and electromagnetic responses. This apparent success, however, masks a fundamental shortcoming: topological insulators represent only a few hundred of the 200,000 stoichiometric compounds in material databases. However, it is unclear whether this low number is indicative of the esoteric nature of topological insulators or of a fundamental problem with the current approaches to finding them. Here we propose a complete electronic band theory, which builds on the conventional band theory of electrons, highlighting the link between the topology and local chemical bonding. This theory of topological quantum chemistry provides a description of the universal (across materials), global properties of all possible band structures and (weakly correlated) materials, consisting of a graph-theoretic description of momentum (reciprocal) space and a complementary group-theoretic description in real space. For all 230 crystal symmetry groups, we classify the possible band structures that arise from local atomic orbitals, and show which are topologically non-trivial. Our electronic band theory sheds new light on known topological insulators, and can be used to predict many more.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of theory applied to graphene with SOC.
Figure 2: Representative band structures for newly predicted materials.
Figure 3: Representative band structures for topologically non-trivial insulators in the Bi1− square net structure type.

References

  1. Kittel, C. Quantum Theory of Solids 186–190 (Wiley, 1987)

  2. Zak, J. Band representations of space groups. Phys. Rev. B 26, 3010–3023 (1982)

    ADS  CAS  Article  Google Scholar 

  3. Bacry, H., Michel, L. & Zak, J. in Group Theoretical Methods in Physics (eds Doebner, H. D. et al.) 289–308 (Springer, 1988)

  4. Bacry, H. Duals of crystallographic groups. Band and quasi-band representations. Commun. Math. Phys. 153, 359–390 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  5. Evarestov, R. A & Smirnov, V. P. Site Symmetry in Crystals 89–184 (Springer, 1997)

  6. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012)

    ADS  CAS  Article  Google Scholar 

  7. Elcoro, L. et al. Double crystallographic groups and their representations on the bilbao crystallographic server. Preproof available at https://arxiv.org/abs/1706.09272 (2017)

  8. Soluyanov, A. A. & Vanderbilt, D. Wannier representation of Z2 topological insulators. Phys. Rev. B 83, 035108 (2011)

    ADS  Article  Google Scholar 

  9. Soluyanov, A. A. & Vanderbilt, D. Smooth gauge for topological insulators. Phys. Rev. B 85, 115415 (2012)

    ADS  Article  Google Scholar 

  10. Read, N. Compactly-supported Wannier functions and algebraic k-theory. Phys. Rev. B 95, 115309 (2017)

    ADS  Article  Google Scholar 

  11. Fulton, W & Harris, J. Representation Theory: A First Course Ch. 3 (Springer, 2004)

  12. Michel, L. & Zak, J. Elementary energy bands in crystals are connected. Phys. Rep. 341, 377–395 (2001)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  13. Brouder, C., Panati, G., Calandra, M., Mourougane, C. & Marzari, N. Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98, 046402 (2007)

    ADS  Article  Google Scholar 

  14. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    ADS  CAS  Article  Google Scholar 

  15. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M. & Wondratschek, H. Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. A 62, 115–128 (2006)

    ADS  Article  Google Scholar 

  16. Freed, D. S. & Moore, G. W. Twisted equivariant matter. Ann. Henri Poincare 14, 1927–2023 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  17. Kruthoff, J., de Boer, J., van Wezel, J., Kane, C. L. & Slager, R.-J. Topological classification of crystalline insulators through band structure combinatorics. Preprint at https://arxiv.org/abs/1612.02007 (2016)

  18. Po, H. C., Vishwanath, A. & Watanabe, H. Symmetry-based indicators of band topology in the 230 space groups. Preprint at https://arxiv.org/abs/1703.00911 (2017)

  19. Haldane, F. D. M. Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  20. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009)

    CAS  Article  Google Scholar 

  21. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398–402 (2009)

    CAS  Article  Google Scholar 

  22. Winkler, G. W., Soluyanov, A. A. & Troyer, M. Smooth gauge and wannier functions for topological band structures in arbitrary dimensions. Phys. Rev. B 93, 035453 (2016)

    ADS  Article  Google Scholar 

  23. Liu, Z. et al. A stable three-dimensional topological dirac semimetal Cd3As2 . Nat. Mater. 13, 677–681 (2014)

    ADS  CAS  Article  Google Scholar 

  24. Liu, Z. et al. Discovery of a three-dimensional topological dirac semimetal, Na3Bi. Science 343, 864–867 (2014)

    ADS  CAS  Article  Google Scholar 

  25. Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Edn Engl. 26, 846–878 (1987)

    Article  Google Scholar 

  26. Zak, J. Berry’s phase for energy bands in solids. Phys. Rev. Lett. 62, 2747–2750 (1989)

    ADS  CAS  Article  Google Scholar 

  27. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651(R)–1654(R) (1993)

    ADS  Article  Google Scholar 

  28. Ryu, S. & Hatsugai, Y. Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys. Rev. Lett. 89, 077002 (2002)

    ADS  Article  Google Scholar 

  29. Bernevig, B. A & Hughes, T. L. Topological Insulators and Topological Superconductors 226–228 (Princeton Univ. Press, 2013)

  30. Kivelson, S. Wannier functions in one-dimensional disordered systems: application to fractionally charged solitons. Phys. Rev. B 26, 4269–4277 (1982)

    ADS  CAS  Article  Google Scholar 

  31. Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982)

    ADS  CAS  Article  Google Scholar 

  32. Atala, M. et al. Direct measurement of the Zak phase in topological bloch bands. Nat. Phys. 9, 795–800 (2013)

    CAS  Article  Google Scholar 

  33. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys. 12, 296–300 (2016)

    CAS  Article  Google Scholar 

  34. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Preprint at https://arxiv.org/abs/1611.07987 (2016)

  35. Fang, C., Gilbert, M. J. & Bernevig, B. A. Entanglement spectrum classification of C n-invariant noninteracting topological insulators in two dimensions. Phys. Rev. B 87, 035119 (2013)

    ADS  Article  Google Scholar 

  36. Tubman, N. M. & Yang, D. C. Quantum dissection of a covalent bond with the entanglement spectrum. Preprint at https://arxiv.org/abs/1412.1495 (2014)

  37. Ferrari, A. Il sottossido di piombo. Gazz. Chim. Ital. 56, 630 (1926)

    Google Scholar 

  38. Pfitzner, A. & Reiser, S. Refinement of the crystal structures of Cu3Ps4 and Cu3SbS4 and a comment on normal tetrahedral structures. Z. Kristallogr. 217, 51 (2002)

    CAS  Google Scholar 

  39. Wang, Y., Lin, H., Das, T., Hasan, M. & Bansil, A. Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds. New J. Phys. 13, 085017 (2011)

    ADS  Article  Google Scholar 

  40. Vergniory, M. G. et al. Graph theory data for topological quantum chemistry. Preproof available at https://arxiv.org/abs/1706.08529 (2017)

  41. Watanabe, H., Po, H. C., Zaletel, M. P. & Vishwanath, A. Filling-enforced gaplessness in band structures of the 230 space groups. Phys. Rev. Lett. 117, 096404 (2016)

    ADS  Article  Google Scholar 

  42. Xu, Q. et al. Two-dimensional oxide topological insulator with iron-pnictide superconductor lifeas structure. Phys. Rev. B 92, 205310 (2015)

    ADS  Article  Google Scholar 

  43. Lou, R. et al. Emergence of topological bands on the surface of zrsnte crystal. Phys. Rev. B 93, 241104(R) (2016)

    ADS  Article  Google Scholar 

  44. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016)

    ADS  CAS  Article  Google Scholar 

  45. Morris, A. J., Grey, C. P. & Pickard, C. J. Thermodynamically stable lithium silicides and germanides from density functional theory calculations. Phys. Rev. B 90, 054111 (2014)

    ADS  Article  Google Scholar 

  46. Bradlyn, B . et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016)

    MathSciNet  Article  Google Scholar 

  47. Falck, L., Lindqvist, O. & Moret, J. Tricopper(ii) tellurate(vi). Acta Crystallogr. B 34, 896–897 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

B.B. thanks I. Souza, R. Martin and I. Momennejad for discussions. M.G.V. thanks G. Lopez-Garmendia for help with computational work. B.B., J.C., Z.W. and B.A.B. acknowledge the hospitality of the Donostia International Physics Center, where parts of this work were carried out. J.C. also acknowledges the hospitality of the Kavli Institute for Theoretical Physics, and B.A.B. the hospitality and support of the École Normale Supérieure and Laboratoire de Physique Théorique et Hautes Energies. The work of M.V.G. was supported by the FIS2016-75862-P and FIS2013-48286-C2-1-P national projects of the Spanish MINECO. The work of L.E. and M.I.A. was supported by the Government of the Basque Country (project IT779-13) and the Spanish Ministry of Economy and Competitiveness and FEDER funds (project MAT2015-66441-P). Z.W. and B.A.B., and part of the development of the initial theory and further ab initio work, were supported by the Department of Energy de-sc0016239, a Simons Investigator Award, the Packard Foundation and the Schmidt Fund for Innovative Research. The development of the practical part of the theory, the tables, some of the code development and the ab initio work was funded by NSF EAGER grant number DMR-1643312, ONR N00014-14-1-0330 and NSF-MRSEC DMR-1420541.

Author information

Authors and Affiliations

Authors

Contributions

B.B., J.C., Z.W. and B.A.B. provided the theoretical analysis, with input from C.F. J.C. developed specific models to test the theory. L.E. and M.I.A. performed the computerized group-theoretic computations. B.B., L.E. and M.G.V. devised and developed the graph algorithms and the EBR connectivities; L.E. and M.G.V. performed the computerized graph-theory computations. Z.W. discovered the new materials presented here with input from C.F., and performed all of the first-principles calculations.

Corresponding author

Correspondence to B. Andrei Bernevig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks A. Akhmerov and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related audio

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-6, Supplementary Figures 1-18, Supplementary Tables 1-16, and additional references. (PDF 5171 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bradlyn, B., Elcoro, L., Cano, J. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). https://doi.org/10.1038/nature23268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature23268

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing