Infrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere1,2,3. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum4,5. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission6,7,8. It has been suggested that stratospheres could form in highly irradiated exoplanets9,10, but the extent to which this occurs is unresolved both theoretically11,12 and observationally3,13,14,15. A previous claim for the presence of a stratosphere14 remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements3. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009)

  2. 2.

    et al. A systematic retrieval analysis of secondary eclipse spectra. I. A comparison of atmospheric retrieval techniques. Astrophys. J. 775, 137 (2013)

  3. 3.

    et al. No thermal inversion and a solar water abundance for the hot Jupiter HD 209458b from HST/WFC3 spectroscopy. Astrophys. J. 152, 203 (2016)

  4. 4.

    et al. Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science 346, 838–841 (2014)

  5. 5.

    et al. Evidence for atmospheric cold-trap process in the non-inverted emission spectrum of Kepler-13Ab using HST/WFC3. Preprint at (2016)

  6. 6.

    , & The 2.8–14-micron spectrum of Jupiter. Astrophys. J. 157, 925–934 (1969)

  7. 7.

    Jupiter: identification of ethane and acetylene. Astrophys. J. 187, L41–L43 (1974)

  8. 8.

    , & The thermal structure of the atmosphere of Jupiter. Astrophys. J. 193, 481–493 (1974)

  9. 9.

    , , & A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008)

  10. 10.

    , & A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003)

  11. 11.

    , & Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. Astrophys. J. 678, 1436–1457 (2008)

  12. 12.

    , & Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009)

  13. 13.

    , , , & The 3.6–8.0μm broadband emission spectrum of HD209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008)

  14. 14.

    , , , & Spectroscopic evidence for a temperature inversion in the dayside atmosphere of hot Jupiter WASP-33b. Astrophys. J. 806, 146 (2015)

  15. 15.

    et al. 3.6 and 4.5 μm Spitzer phase curves of the highly irradiated hot Jupiters WASP-19b and HAT-P-7b. Astrophys. J. 823, 122 (2016)

  16. 16.

    et al. Near-infrared emission spectrum of WASP-103b using Hubble Space Telescope/Wide Field Camera 3. Astron. J. 153, 34 (2017)

  17. 17.

    , , & Water vapor in the spectrum of the extrasolar planet HD 189733b. II. The eclipse. Astrophys. J. 795, 166 (2014)

  18. 18.

    et al. The emergent 1.1–1.7 μm spectrum of the exoplanet COROT-2b as measured using the Hubble Space Telescope. Astrophys. J. 783, 113 (2014)

  19. 19.

    et al. Detection of H2O and evidence for TiO/VO in an ultra-hot exoplanet atmosphere. Astrophys. J. 822, L4 (2016)

  20. 20.

    et al. WASP-121 b: a hot Jupiter close to tidal disruption transiting an active F star. Mon. Not. R. Astron. Soc. 458, 4025–4043 (2016)

  21. 21.

    & Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. Suppl. Ser. 168, 140–166 (2007)

  22. 22.

    & Transmission spectral properties of clouds for hot Jupiter exoplanets. Astron. Astrophys. 573, A122 (2015)

  23. 23.

    On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27 (2010)

  24. 24.

    & Thermal structure of Uranus’ atmosphere. Icarus 138, 268–286 (1999)

  25. 25.

    , & Gravity wave heating and cooling in Jupiter’s thermosphere. Icarus 148, 266–281 (2000)

  26. 26.

    & Heating of Jupiter’s thermosphere by dissipation of gravity waves due to molecular viscosity and heat conduction. Icarus 140, 328–340 (1999)

  27. 27.

    , , & On the effects of clouds and hazes in the atmospheres of hot Jupiters: semi-analytical temperature-pressure profiles. Mon. Not. R. Astron. Soc. 420, 20–36 (2012)

  28. 28.

    Titanium and vanadium chemistry in low-mass dwarf stars. Astrophys. J. 577, 974–985 (2002)

  29. 29.

    et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016)

  30. 30.

    et al. Discoveries from a near-infrared proper motion survey using multi-epoch Two Micron All-Sky Survey data. Astrophys. J. Suppl. Ser. 190, 100–146 (2010)

  31. 31.

    , & The NextGen model atmosphere grid for 3,000 ≤ Teff ≤ 10,000 K. Astrophys. J. 512, 377–385 (1999)

  32. 32.

    et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera 3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013)

  33. 33.

    et al. HST PanCET program: a cloudy atmosphere for the promising JWST target WASP-101b. Astrophys. J. 835, L12 (2017)

  34. 34.

    & Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

  35. 35.

    , , & emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013)

  36. 36.

    et al. SciPy: Open source scientific tools for Python. (2001)

  37. 37.

    & Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992)

  38. 38.

    et al. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95 (2013)

  39. 39.

    et al. Spitzer secondary eclipses of the dense, modestly-irradiated, giant exoplanet HAT-P-20b using pixel-level decorrelation. 805, 132 (2015)

  40. 40.

    et al. Accuracy tests of radiation schemes used in hot Jupiter global circulation models. Astron. Astrophys. 564, A59 (2014)

  41. 41.

    , , , & Treatment of overlapping gaseous absorption bands with the correlated-k method in hot Jupiter and brown dwarf atmosphere models. Astron. Astrophys. 598, A97 (2017)

  42. 42.

    et al. The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters. Astron. Astrophys. 594, A69 (2016)

  43. 43.

    et al. Fingering convection and cloudless models for cool brown dwarf atmospheres. Astrophys. J. 804, L17 (2015)

  44. 44.

    et al. Cloudless atmospheres for L/T dwarfs and extrasolar giant planets. Astrophys. J. 817, L19 (2016)

  45. 45.

    et al. HAT-P-26b: a Neptune-mass exoplanet with a well-constrained heavy element abundance. Science 356, 628–631 (2017)

  46. 46.

    , & EXOFAST: a fast exoplanetary fitting suite in IDL. Publ. Astron. Soc. Pacif. 125, 83–112 (2013)

  47. 47.

    et al. A precise water abundance measurement for the hot Jupiter WASP-43b. Astrophys. J. 793, L27 (2014)

  48. 48.

    et al. Spitzer phase curve constraints for WASP-43b at 3.6 and 4.5 μm. Astron. J. 153, 68 (2017)

  49. 49.

    et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009)

  50. 50.

    et al. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres. J. Mol. Spectrosc. 327, 73–94 (2016)

  51. 51.

    , & Scott Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian Dates. Publ. Astron. Soc. Pacif. 122, 935–946 (2010)

Download references


This work is based on observations with the NASA/ESA HST, obtained at the Space Telescope Science Institute (STScI) operated by AURA, Inc. This work is also based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 336792 and is supported by the ERC Horizon 2020 research and innovation programme (grant agreement no. 724427). Support for this work was provided by NASA through grants under the HST-GO-14767 “Panchromatic Comparative Exoplanetary Treasury (PanCET)” programme from the STScI. J.G. acknowledges support from a Leverhulme Trust Research Project Grant. H.R.W acknowledges support from the NASA Postdoctoral Program, administered by Universities Space Research Association through a contract with NASA. M.S.M. acknowledges support from the NASA Exoplanets Research Program. J.K.B. acknowledges support from a Royal Astronomical Society Fellowship. D.E. and V.B. acknowledge the financial support of the National Centre for Competence in Research “PlanetS” supported by the Swiss National Science Foundation (SNSF). A.L.E. acknowledges support from CNES and the French Agence Nationale de la Recherche (ANR), under programme ANR-12-BS05-0012 “Exo-Atmos”. J.S.-F. acknowledges support from the Spanish MINECO through grant AYA2014-54348-C3-2-R. G.W.H. acknowledges support from NASA, NSF, Tennessee State University, and the State of Tennessee through its Centers of Excellence programme. L.B.-J. and P.L. acknowledge support from CNES (France) under project PACES. P.T. and D.S.A. acknowledge funding from the European Research Council under the European Union Seventh Framework Program: grant 247060-PEPS.

Author information


  1. Astrophysics Group, School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

    • Thomas M. Evans
    • , David K. Sing
    • , Jayesh Goyal
    •  & Nikolay Nikolov
  2. NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109, USA

    • Tiffany Kataria
  3. NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • Hannah R. Wakeford
    •  & Avi M. Mandell
  4. Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA

    • Drake Deming
  5. NASA Ames Research Center, MS 245-5, Moffett Field, California 94035, USA

    • Mark S. Marley
  6. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10025, USA

    • David S. Amundsen
  7. NASA Goddard Institute for Space Studies, New York, New York 10025, USA

    • David S. Amundsen
  8. Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA

    • Gilda E. Ballester
  9. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

    • Joanna K. Barstow
  10. Sorbonne Universités, UPMC Université Paris 6 and CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis boulevard Arago, F-75014 Paris, France

    • Lotfi Ben-Jaffel
    •  & Alain Lecavelier des Etangs
  11. Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Sauverny, Switzerland

    • Vincent Bourrier
    •  & David Ehrenreich
  12. Centre for Star and Planet Formation, Niels Bohr Institute and Natural History Museum, University of Copenhagen, DK-1350 Copenhagen, Denmark

    • Lars A. Buchhave
  13. Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, Massachusetts 01854, USA

    • Ofer Cohen
  14. Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, D-10623 Berlin, Germany

    • Antonio García Muñoz
  15. Center of Excellence in Information Systems, Tennessee State University, Nashville, Tennessee 37209, USA

    • Gregory W. Henry
  16. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA

    • Heather Knutson
  17. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR 7331, CNRS, Université de Reims Champagne-Ardenne, Reims 51687, France

    • Panayotis Lavvas
  18. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

    • Nikole K. Lewis
  19. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

    • Mercedes López-Morales
  20. Centro de Astrobiología (CSIC-INTA), ESAC Campus, Camino bajo del Castillo, E-28692 Villanueva de la Cañada, Madrid, Spain

    • Jorge Sanz-Forcada
  21. Maison de la Simulation, CEA, CNRS, Université Paris-Sud, UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

    • Pascal Tremblin
  22. Bay Area Environmental Research Institute, Moffett Field, California 94035, USA

    • Roxana Lupu


  1. Search for Thomas M. Evans in:

  2. Search for David K. Sing in:

  3. Search for Tiffany Kataria in:

  4. Search for Jayesh Goyal in:

  5. Search for Nikolay Nikolov in:

  6. Search for Hannah R. Wakeford in:

  7. Search for Drake Deming in:

  8. Search for Mark S. Marley in:

  9. Search for David S. Amundsen in:

  10. Search for Gilda E. Ballester in:

  11. Search for Joanna K. Barstow in:

  12. Search for Lotfi Ben-Jaffel in:

  13. Search for Vincent Bourrier in:

  14. Search for Lars A. Buchhave in:

  15. Search for Ofer Cohen in:

  16. Search for David Ehrenreich in:

  17. Search for Antonio García Muñoz in:

  18. Search for Gregory W. Henry in:

  19. Search for Heather Knutson in:

  20. Search for Panayotis Lavvas in:

  21. Search for Alain Lecavelier des Etangs in:

  22. Search for Nikole K. Lewis in:

  23. Search for Mercedes López-Morales in:

  24. Search for Avi M. Mandell in:

  25. Search for Jorge Sanz-Forcada in:

  26. Search for Pascal Tremblin in:

  27. Search for Roxana Lupu in:


T.M.E. and D.K.S. designed the HST observations of WASP-121. D.K.S. and M.L.-M. led the HST Treasury programme, with support provided by all authors. T.M.E. led the HST data analysis with contributions from N.N., H.R.W. and D.D. D.D. proposed and designed the Spitzer observations and analysed the data. D.K.S. led the retrieval analysis. T.K., J.G., M.S.M., A.L.E. and P.T. provided additional theoretical interpretation of the data. R.L. provided molecular absorption cross-sections for the theoretical interpretation. T.M.E. wrote the manuscript along with D.K.S., T.K., M.S.M. and A.L.E. All authors discussed the results and commented on the paper. The author list ordering is alphabetical after M.S.M.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Thomas M. Evans.

Reviewer Information Nature thanks K. Heng and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

Zip files

  1. 1.

    Supplementary Data

    This file contains an archive of ASCII files containing reduced HST data products and models used in the paper.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.