Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Upgrading protected areas to conserve wild biodiversity


International agreements mandate the expansion of Earth's protected-area network as a bulwark against the continued extinction of wild populations, species, and ecosystems. Yet many protected areas are underfunded, poorly managed, and ecologically damaged; the conundrum is how to increase their coverage and effectiveness simultaneously. Innovative restoration and rewilding programmes in Costa Rica's Área de Conservación Guanacaste and Mozambique's Parque Nacional da Gorongosa highlight how degraded ecosystems can be rehabilitated, expanded, and woven into the cultural fabric of human societies. Worldwide, enormous potential for biodiversity conservation can be realized by upgrading existing nature reserves while harmonizing them with the needs and aspirations of their constituencies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Área de Conservación Guanacaste in Costa Rica.
Figure 2: Parque Nacional da Gorongosa in Mozambique.
Figure 3: Biological education in Gorongosa National Park.


  1. 1

    Barnosky, A. D. et al. Has the Earth's sixth mass extinction already arrived? Nature 470, 51–57 (2012).

    Google Scholar 

  2. 2

    Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Pimm, S. L., Jenkins, C. N., Abell, R. & Brooks, T. M. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Google Scholar 

  4. 4

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS  CAS  PubMed  Google Scholar 

  5. 5

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Hoffmann, M. et al. The impact of conservation on the status of the world's vertebrates. Science 330, 1503–1509 (2010).

    ADS  CAS  PubMed  Google Scholar 

  7. 7

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014). This review of the history and effectiveness of protected areas proposes that conservationists should refocus on establishing large, connected, well-funded, and well-managed protected areas.

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Naughton-Treves, L., Holland, M. B. & Brandon, K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu. Rev. Env. Resour. 30, 219–252 (2005).

    Google Scholar 

  9. 9

    Ricketts, T. H. et al. Pinpointing and preventing imminent extinctions. Proc. Natl Acad. Sci. USA 102, 18497–18501 (2005).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Runge, C. A. et al. Protected areas and global conservation of migratory birds. Science 350, 1255–1258 (2015).

    ADS  CAS  PubMed  Google Scholar 

  11. 11

    Jenkins, C. N., Van Houtan, K. S., Pimm, S. L. & Sexton, J. O. US protected lands mismatch biodiversity priorities. Proc. Natl Acad. Sci. USA 112, 5081–5086 (2015).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    ADS  Google Scholar 

  13. 13

    Convention on Biological Diversity (CBD). COP 10 Decision X/2: Strategic Plan for Biodiversity 2011–2010 (CBD, 2011).

  14. 14

    Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000). This landmark review spawned a field of research that uses geospatial tools, global data sets, and algorithmic software to prioritize conservation actions.

    CAS  PubMed  Google Scholar 

  15. 15

    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Wilson, K. A., McBride, M. F., Bode, M. & Possingham, H. P. Prioritizing global conservation efforts. Nature 440, 337–340 (2006).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity's goals for plant conservation. Science 341, 1100–1103 (2013).

    ADS  CAS  Google Scholar 

  19. 19

    Wilson, K. A. et al. Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol. 5, e223 (2007).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Fuller, R. A. et al. Replacing underperforming protected areas achieves better conservation outcomes. Nature 466, 365–367 (2010). Scrapping cost-ineffective protected areas and reallocating the funds can increase the efficiency and ecological value of conserved lands without increasing overall spending.

    ADS  CAS  PubMed  Google Scholar 

  21. 21

    McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    ADS  CAS  Google Scholar 

  22. 22

    Conde, D. A. et al. Opportunities and costs for preventing vertebrate extinctions. Curr. Biol. 25, R219–R221 (2015).

    CAS  PubMed  Google Scholar 

  23. 23

    Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial Conservation Prioritization (Oxford Univ. Press, 2009).

    Google Scholar 

  24. 24

    Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

    PubMed  Google Scholar 

  25. 25

    Ferraro, P. J. & Pattanayak, S. K. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biol. 4, e105 (2006).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Naughton-Treves, L., Alix-Garcia, J. & Chapman, C. A. Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda. Proc. Natl Acad. Sci. USA 108, 13919–13924 (2011).

    ADS  CAS  PubMed  Google Scholar 

  27. 27

    Ferraro, P. J., Hanauer, M. M. & Sims, K. R. E. Conditions associated with protected area success in conservation and poverty reduction. Proc. Natl Acad. Sci. USA 108, 13913–13918 (2011).

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Phil. Trans. R. Soc. B 370, 20140270 (2015).

    PubMed  Google Scholar 

  29. 29

    Craigie, I. D., Barnes, M. D., Geldmann, J. & Woodley, S. International funding agencies: potential leaders of impact evaluation in protected areas? Phil. Trans. R. Soc. B 370, 20140283 (2015).

    PubMed  Google Scholar 

  30. 30

    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the Global Database of Protected Area Management Effectiveness. Phil. Trans. R. Soc. B 370, 20140281 (2015). This paper describes progress towards a worldwide evaluation of the performance of protected areas.

    PubMed  Google Scholar 

  31. 31

    Visconti, P., Bakkenes, M., Smith, R. J., Joppa, L. & Sykes, R. E. Socio–economic and ecological impacts of global protected area expansion plans. Phil. Trans. R. Soc. B 370, 20140284 (2015).

    PubMed  Google Scholar 

  32. 32

    Leverington, F., Costa, K. L., Pavese, H., Lisle, A. & Hockings, M. A global analysis of protected area management effectiveness. Environ. Manage. 46, 685–698 (2010).

    ADS  PubMed  Google Scholar 

  33. 33

    Geldmann, J. et al. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692–699 (2015).

    Google Scholar 

  34. 34

    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).

    Google Scholar 

  35. 35

    Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Hilborn, R. et al. Effective enforcement in a conservation area. Science 314, 1266 (2006).

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    Joppa, L. N., Loarie, S. R. & Pimm, S. L. On the protection of “protected areas”. Proc. Natl Acad. Sci. USA 105, 6673–6678 (2008).

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    ADS  CAS  PubMed  Google Scholar 

  39. 39

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Commun. 7, 12306 (2016).

    ADS  CAS  Google Scholar 

  40. 40

    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B 278, 1633–1638 (2011). Matching analysis of protected and unprotected areas shows that legal protection has reduced landscape conversion in 75% of 147 countries.

    PubMed  Google Scholar 

  41. 41

    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio–economic metrics and body size. Nature Commun. 7, 12747 (2016).

    ADS  CAS  Google Scholar 

  42. 42

    Andam, K. S., Ferraro, P. J., Sims, K. R. E., Healy, A. & Holland, M. B. Protected areas reduced poverty in Costa Rica and Thailand. Proc. Natl Acad. Sci. USA 107, 9996–10001 (2010). Controlled matching methods reveal that protected areas in two very different countries had net positive effects on the livelihoods of local people.

    ADS  CAS  PubMed  Google Scholar 

  43. 43

    Balmford, A. et al. A global perspective on trends in nature-based tourism. PLoS Biol. 7, e1000144 (2009). Although a decline in the level of outdoor recreation in some developed countries has raised concerns, this study finds an increase in visits to protected areas in most countries, especially poorer ones.

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Maekawa, M., Lanjouw, A., Rutagarama, E. & Sharp, D. Mountain gorilla tourism generating wealth and peace in post-conflict Rwanda. Nat. Resour. Forum 37, 127–137 (2013).

    Google Scholar 

  45. 45

    Ogutu, J. O. & Owen-Smith, N. ENSO, rainfall and temperature influences on extreme population declines among African savanna ungulates. Ecol. Lett. 6, 412–419 (2003).

    Google Scholar 

  46. 46

    Western, D., Russell, S. & Cuthill, I. The status of wildlife in protected areas compared to non-protected areas of Kenya. PLoS ONE 4, e6140 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Craigie, I. D. et al. Large mammal population declines in Africa's protected areas. Biol. Conserv. 143, 2221–2228 (2010). This continent-scale analysis shows that populations of 69 wildlife species in 78 protected areas declined by an average of 59% between 1970 and 2005.

    Google Scholar 

  48. 48

    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2010).

    Google Scholar 

  50. 50

    Mascia, M. B. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biol. Conserv. 169, 355–361 (2014). This study of Earth's most biodiverse regions finds 543 instances in which protected areas were shrunk or defanged, most often to facilitate industrial-scale extractive industry and development.

    Google Scholar 

  51. 51

    Kareiva, P. Conservation science: trade-in to trade-up. Nature 466, 322–323 (2010).

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Rodríguez, J. & Rodríguez-Clark, K. M. Even 'paper parks' are important. Trends Ecol. Evol. 16, 17 (2001).

    PubMed  Google Scholar 

  53. 53

    Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    ADS  CAS  PubMed  Google Scholar 

  54. 54

    Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632 (2005).

    ADS  CAS  PubMed  Google Scholar 

  55. 55

    McAlpine, C. et al. Integrating plant- and animal-based perspectives for more effective restoration of biodiversity. Front. Ecol. Environ. 14, 37–45 (2016).

    Google Scholar 

  56. 56

    Janzen, D. H. & Hallwachs, W. in Costa Rican Ecosystems (ed. Kappelle, M.) Ch. 10, 290–341 (Univ. Chicago Press, 2016). An authoritative account of conservation history in Costa Rica's ACG.

    Google Scholar 

  57. 57

    Janzen, D. H. Costa Rica's Area de Conservación Guanacaste: a long march to survival through non-damaging biodevelopment. Biodiversity 1, 7–20 (2000).

    Google Scholar 

  58. 58

    Janzen, D. H. in Biodiversity (ed. Wilson, E. O.) 130–137 (National Academy, 1988).

    Google Scholar 

  59. 59

    Janzen, D. H. Management of habitat fragments in a tropical dry forest: growth. Ann. Mo. Bot. Gard. 75, 105–116 (1988).

    Google Scholar 

  60. 60

    Allen, W. Green Phoenix: Restoring the Tropical Forests of Guanacaste, Costa Rica (Oxford Univ. Press, 2001).

    Google Scholar 

  61. 61

    Janzen, D. H. & Hallwachs, W. DNA barcoding the Lepidoptera inventory of a large complex tropical conserved wildland, Area de Conservacion Guanacaste, northwestern Costa Rica. Genome 59, 641–660 (2016).

    CAS  PubMed  Google Scholar 

  62. 62

    Smith, M. A., Hallwachs, W. & Janzen, D. H. Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37, 720–731 (2014).

    Google Scholar 

  63. 63

    Janzen, D. H. Tropical ecological and biocultural restoration. Science 239, 243–244 (1988).

    ADS  CAS  PubMed  Google Scholar 

  64. 64

    Janzen, D. H. & Hallwachs, W. in Man and his Environment: Tropical Forests and the Conservation of Species (ed. Marini-Bettòlo, G. B.) 227–255 (Pontificae Academiae Scientiarum, 1993).

    Google Scholar 

  65. 65

    Ehrlich, P. R. & Pringle, R. M. Where does biodiversity go from here? A grim business-as-usual forecast and a hopeful portfolio of partial solutions. Proc. Natl Acad. Sci. USA 105, 11579–11586 (2008).

    ADS  CAS  PubMed  Google Scholar 

  66. 66

    Adams, W. M. et al. Biodiversity conservation and the eradication of poverty. Science 306, 1146–1149 (2004).

    ADS  CAS  PubMed  Google Scholar 

  67. 67

    Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).

    Google Scholar 

  68. 68

    Janzen, D. H. Hope for tropical biodiversity through true bioliteracy. Biotropica 42, 540–542 (2010).

    Google Scholar 

  69. 69

    Janzen, D. H. Now is the time. Phil. Trans. R. Soc. B 359, 731–732 (2004).

    PubMed  Google Scholar 

  70. 70

    Janzen, D. H. Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists. J. Appl. Ecol. 41, 181–187 (2004).

    Google Scholar 

  71. 71

    Schmiedel, U. et al. Contributions of paraecologists and parataxonomists to research, conservation, and social development. Conserv. Biol. 30, 506–519 (2016).

    PubMed  Google Scholar 

  72. 72

    Janzen, D. H. & Hallwachs, W. Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica. PLoS ONE 6, e18123 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Basurto, X. Bureaucratic barriers limit local participatory governance in protected areas in Costa Rica. Conserv. Soc. 11, 16–28 (2013).

    Google Scholar 

  74. 74

    Finnegan, W. A Complicated War: the Harrowing of Mozambique (Univ. California Press, 1993).

    Google Scholar 

  75. 75

    Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).

    Google Scholar 

  76. 76

    Pringle, R. M. How to be manipulative: intelligent tinkering is key to understanding ecology and rehabilitating ecosystems. Am. Sci. 100, 30–37 (2012).

    Google Scholar 

  77. 77

    Cumming, D. H. M., Mackie, C. S., Magane, S. & Taylor, R. D. Aerial Census of Large Herbivores in the Gorongosa National Park and the Marromeu Area of the Zambezi Delta in Mozambique (Direcção Nacional de Florestas e Fauna Bravia, 1994).

    Google Scholar 

  78. 78

    Dutton, P. A dream becomes a nightmare: Mozambique's ferocious 15-year bush war has devastated a once rich and abundant wildlife. Afr. Wildlife 48, 6–14 (1994).

    Google Scholar 

  79. 79

    Tinley, K. L. Framework of the Gorongosa Ecosystem, Mozambique. PhD thesis, Univ. Pretoria (1977). This exquisite 320-page study documents the ecology of PNG from 1968 to 1972, providing a benchmark for post-war restoration efforts.

  80. 80

    Dunham, K. M. Aerial Survey of Large Herbivores in Gorongosa National Park, Mozambique: 2004 (Carr Foundation, 2004).

    Google Scholar 

  81. 81

    Governo da República de Moçambique & Parque Nacional da Gorongosa. Acordo de Gestão Conjunta do Parque Nacional da Gorongosa. Entre O Governo da República de Moçambique, Representado Pelo Ministério do Turismo E A Gregory C. Carr Foundation. (2008). The legal contract establishing the public–private partnership for the co-management of PNG (in Portuguese).

  82. 82

    Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).

    ADS  CAS  PubMed  Google Scholar 

  83. 83

    Stalmans, M. Monitoring the Recovery of Wildlife in the Parque Nacional da Gorongosa through Aerial Surveys (2012).

    Google Scholar 

  84. 84

    Rodríguez-Echeverría, S. et al. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol. 213, 380–390 (2017).

    PubMed  Google Scholar 

  85. 85

    Correia, M., Timóteo, S., Rodríguez-Echeverría, S., Mazars-Simon, A. & Heleno, R. Refaunation and the reinstatement of the seed-dispersal function in Gorongosa National Park. Conserv. Biol. 31, 76–85 (2016).

    PubMed  Google Scholar 

  86. 86

    West, P., Igoe, J. & Brockington, D. Parks and peoples: the social impact of protected areas. Annu. Rev. Anthropol. 35, 251–277 (2006).

    Google Scholar 

  87. 87

    Chan, K. et al. When agendas collide: human welfare and biological conservation. Conserv. Biol. 21, 59–68 (2007).

    PubMed  Google Scholar 

  88. 88

    Torchia, C. Recovering from war, Mozambican park again faces conflict. AP News (18 December 2016).

  89. 89

    Club of Mozambique. Gorongosa Park signs agreement with Entreposto to convert game reserve into protected area. Club of Mozambique (1 December 2016).

  90. 90

    Seddon, P. J., Griffiths, C. J., Soorae, P. S. & Armstrong, D. P. Reversing defaunation: restoring species in a changing world. Science 345, 406–412 (2014).

    ADS  CAS  PubMed  Google Scholar 

  91. 91

    Powers, J. S., Becknell, J. M., Irving, J. & Pèrez-Aviles, D. Diversity and structure of regenerating tropical dry forests in Costa Rica: geographic patterns and environmental drivers. For. Ecol. Manage. 258, 959–970 (2009).

    Google Scholar 

  92. 92

    Davies, R. in Wildlife Conservation by Sustainable Use (eds Prins, H. H. T., Grootenhuis J. G. & Dolan, T. T.), 439–458 (Springer, 2000).

    Google Scholar 

  93. 93

    Nakano, S. & Murakami, M. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl Acad. Sci. USA 98, 166–170 (2001).

    ADS  CAS  PubMed  Google Scholar 

  94. 94

    McNally, C. G., Uchida, E. & Gold, A. J. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl Acad. Sci. USA 108, 13945–13950 (2011).

    ADS  CAS  PubMed  Google Scholar 

  95. 95

    Pringle, R. M. The Nile perch in Lake Victoria: local responses and adaptations. Africa 75, 510–538 (2005).

    Google Scholar 

  96. 96

    Schuetze, C. Narrative fortresses: crisis narratives and conflict in the conservation of Mount Gorongosa, Mozambique. Conserv. Soc. 13, 141–153 (2015).

    Google Scholar 

  97. 97

    Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc. Natl Acad. Sci. USA 101, 14812–14817 (2004).

    ADS  CAS  PubMed  Google Scholar 

  98. 98

    Smith, M. A., Wood, D. M., Janzen, D. H., Hallwachs, W. & Hebert, P. D. N. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc. Natl Acad. Sci. USA 104, 4967–4972 (2007).

    ADS  CAS  PubMed  Google Scholar 

  99. 99

    Smith, M. A., Woodley, N. E., Janzen, D. H., Hallwachs, W. & Hebert, P. D. N. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc. Natl Acad. Sci. USA 103, 3657–3662 (2006). This study integrates DNA barcoding, biodiversity inventory, and morphological taxonomic analysis to discover hundreds of undescribed cryptic species and their highly host-specific food-web interactions.

    ADS  CAS  PubMed  Google Scholar 

  100. 100

    Smith, M. A. et al. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl Acad. Sci. USA 105, 12359–12364 (2008).

    ADS  CAS  PubMed  Google Scholar 

  101. 101

    Burns, J. M., Janzen, D. H., Hajibabaei, M., Hallwachs, W. & Hebert, P. D. N. DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de Conservación Guanacaste, Costa Rica. Proc. Natl Acad. Sci. USA 105, 6350–6355 (2008).

    ADS  CAS  PubMed  Google Scholar 

  102. 102

    Tallis, H. & Lubchenco, J. Working together: A call for inclusive conservation. Nature 515, 27–28 (2014).

    ADS  CAS  PubMed  Google Scholar 

  103. 103

    Wilson, E. O. Biophilia (Harvard Univ. Press, 1986).

    Google Scholar 

  104. 104

    Abelson, A. et al. Expanding marine protected areas to include degraded coral reefs. Conserv. Biol. 30, 1182–1191 (2016).

    CAS  PubMed  Google Scholar 

  105. 105

    Jetz, W. et al. Monitoring plant functional diversity from space. Nature Plants 2, 16024 (2016).

    PubMed  Google Scholar 

  106. 106

    Handley, L. L. How will the 'molecular revolution' contribute to biological recording? Biol. J. Linn. Soc. 115, 750–766 (2015).

    Google Scholar 

Download references


Figs 1 and 2 were based on designs created by Terra Communications. D. Janzen, W. Hallwachs, W. Sandoval, M. Mutimucuio, D. Muala, M. Stalmans, G. Carr, J. Daskin, M. Jordan, P. Naskrecki, P. Bouley and C. Tarnita supplied information, graphics, or comments that were crucial to the preparation of this article. I thank the following organizations for support: the US National Science Foundation (DEB-1355122, DEB-1457697), the Princeton Environmental Institute, Princeton's Innovation Fund for New Ideas in the Natural Sciences, and the Gorongosa Project.

Author information



Corresponding author

Correspondence to Robert M. Pringle.

Ethics declarations

Competing interests

The author's primary institution (Princeton University) has received research funding from the Gorongosa Project, a US-registered charitable non-profit organization that is discussed in this Perspective, to support the author's work on the ecology and conservation of Gorongosa National Park, Mozambique. The author serves on the boards of directors of both the Gorongosa Project and the Guanacaste Dry Forest Conservation Fund (another US-registered non-profit organization discussed in this Perspective) but is not financially compensated for his service in either of these capacities.

Additional information

Reviewer Information Nature thanks L. Joppa and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pringle, R. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing