Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coral reefs in the Anthropocene

Abstract

Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The climate gauntlet faced by coral reefs.
Figure 2: Linkages and feedbacks between people and coral reefs.
Figure 3: The modelled response of coral reefs to multiple anthropogenic drivers.
Figure 4: A heuristic model of future management options for coral reefs.

Similar content being viewed by others

References

  1. Crutzen, P. J. in Earth System Science in the Anthropocene (eds Ehlers, E. & Krafft, T.) 13–18 (Springer, 2006).

    Google Scholar 

  2. Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Nature 461, 472–475 (2009). This groundbreaking study places human impacts on the environment in a global framework and provides a fresh understanding of social–ecological systems.

    ADS  PubMed  Google Scholar 

  3. Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622 (2016).

    PubMed  Google Scholar 

  4. Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

    ADS  CAS  PubMed  Google Scholar 

  5. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    ADS  CAS  PubMed  Google Scholar 

  6. Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS  CAS  PubMed  Google Scholar 

  7. Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, 2014).

    Google Scholar 

  8. Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world's coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007). A foundational paper that identifies both increases in temperature and ocean acidification as future threats to coral reefs.

    ADS  CAS  PubMed  Google Scholar 

  10. Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    PubMed  Google Scholar 

  11. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011). This study identifies variable responses of reef corals to temperature increases and ocean acidification, which highlights the potential for alternative future trajectories for coral reefs.

    ADS  CAS  PubMed  Google Scholar 

  12. Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: embracing new futures. Curr. Opin. Env. Sust. 7, 9–14 (2014).

    Google Scholar 

  13. Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Annu. Rev. Mar. Sci. 9, 445–468 (2017).

    ADS  Google Scholar 

  14. NFCCC. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1, http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (UNFCCC, 2015).

  15. Rogelj, J. et al. Paris Agreement climate proposals need boost to keep warming well below 2 °C. Nature 534, 631–639 (2016). A forward-looking evaluation of the potential for global reductions in the emission of greenhouse gases following the Paris agreement.

    ADS  CAS  PubMed  Google Scholar 

  16. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nature Clim. Change 6, 245–252 (2016).

    ADS  Google Scholar 

  17. Mathias, J.-D., Anderies, J. M. & Janssen, M. A. On our rapidly shrinking capacity to comply with the planetary boundaries on climate change. Sci. Rep. 7, 42061 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Collins, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, 2013).

    Google Scholar 

  19. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS  CAS  PubMed  Google Scholar 

  20. Sutton, R. T., Dong, B. & Gregory, J. M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 34, L02701 (2007).

    ADS  Google Scholar 

  21. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    ADS  Google Scholar 

  22. Hoegh-Guldberg, O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Barros, V. R. et al.) Ch. 30, 1655–1731 (Cambridge Univ. Press, 2014).

  23. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Clim. Change 3, 165–170 (2013).

    ADS  Google Scholar 

  24. Gattuso, J.-P. & Hansson, L. Ocean Acidification (Oxford Univ. Press, 2011).

    Google Scholar 

  25. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 3, 255–315 (Cambridge Univ. Press, 2013).

  26. Orr, J. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    ADS  CAS  PubMed  Google Scholar 

  27. Pandolfi, J. M. Incorporating uncertainty in predicting the future response of coral reefs to climate change. Annu. Rev. Ecol. Evol. Syst. 46, 281–303 (2015).

    Google Scholar 

  28. Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

    Google Scholar 

  29. Chan, N. C. S. & Connolly, S. R. Sensitivity of coral calcification to ocean acidification: a meta-analysis. Glob. Change Biol. 19, 282–290 (2013).

    ADS  Google Scholar 

  30. Cooper, T. F., O'Leary, R. A. & Lough, J. M. Growth of Western Australian corals in the Anthropocene. Science 335, 593–596 (2012).

    ADS  CAS  PubMed  Google Scholar 

  31. Bellwood, D. R., Hoey, A. S. & Hughes, T. P. Human activity selectively impacts the ecosystem roles of parrotfishes on coral reefs. Proc. R. Soc. B 279, 1621–1629 (2012).

    PubMed  Google Scholar 

  32. Graham, N. A. J. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).

    Google Scholar 

  33. Swain, T. D. et al. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching. Glob. Change Biol. 22, 2475–2488 (2016).

    ADS  Google Scholar 

  34. Zhang, K., Dearing, J. A., Tong, S. L. & Hughes, T. P. China's degraded environment enters a new normal. Trends Ecol. Evol. 31, 175–177 (2016).

    PubMed  Google Scholar 

  35. Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    PubMed  Google Scholar 

  36. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth's ecosystems. Science 277, 494–499 (1997).

    CAS  Google Scholar 

  37. Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).

    ADS  CAS  PubMed  Google Scholar 

  38. Hicks, C. C., Crowder, L. B., Graham, N. A. J., Kittinger, J. N. & Le Cornu, E. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 14, 252–260 (2016).

    Google Scholar 

  39. Cinner, J. E. & Kittinger, J. N. in Ecology of Fishes on Coral Reefs (ed. Mora, C.) 215–220 (Cambridge Univ. Press, 2015).

    Google Scholar 

  40. Levin, S. et al. Social–ecological systems as complex adaptive systems: modeling and policy implications. Environ. Dev. Econ. 18, 111–132 (2013).

    Google Scholar 

  41. Fischer, J. et al. Advancing sustainability through mainstreaming a social–ecological systems perspective. Curr. Opin. Env. Sust. 14, 144–149 (2015).

    Google Scholar 

  42. Cumming, G. S., Morrison, T. H. & Hughes, T. P. New directions for understanding the spatial resilience of social–ecological systems. Ecosystems http://dx.doi.org/10.1007/s10021-016-0089-5 (2016).

  43. Satake, A., Janssen, M. A., Levin, S. A. & Iwasa, Y. Synchronized deforestation induced by social learning under uncertainty of forest-use value. Ecol. Econ. 63, 452–462 (2007).

    Google Scholar 

  44. Martin, R. & Schlüter, M. Combining system dynamics and agent-based modeling to analyze social–ecological interactions — an example from modeling restoration of a shallow lake. Front. Environ. Sci. 3, 66 (2015).

    Google Scholar 

  45. Laborde, S. et al. Social–ecological feedbacks lead to unsustainable lock-in in an inland fishery. Glob. Environ. Change 41, 13–25 (2016).

    Google Scholar 

  46. Figueiredo, J. & Pereira, H. M. Regime shifts in a socio–ecological model of farmland abandonment. Landscape Ecol. 26, 737–749 (2011).

    Google Scholar 

  47. Ban, S. S., Graham, N. A. J. & Connolly, S. R. Evidence for multiple stressor interactions and effects on coral reefs. Glob. Change Biol. 20, 681–697 (2014).

    ADS  Google Scholar 

  48. Cinner, J. E. et al. Bright spots among the world's coral reefs. Nature 535, 416–419 (2016).

    ADS  CAS  PubMed  Google Scholar 

  49. Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS  CAS  PubMed  Google Scholar 

  50. Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited (World Resources Institute, 2011).

    Google Scholar 

  51. Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world's ocean. Nature Commun. 6, 7615 (2015).

    ADS  CAS  Google Scholar 

  52. Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).

    PubMed  Google Scholar 

  53. Owen-Smith, N. Spatial ecology of large herbivore populations. Ecography 37, 416–430 (2014).

    Google Scholar 

  54. Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P. & Foley, J. E. Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front. Ecol. Environ. 6, 420–429 (2008).

    Google Scholar 

  55. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    ADS  CAS  PubMed  Google Scholar 

  56. van de Leemput, I. A., Hughes, T. P., van Nes, E. H. & Scheffer, M. Multiple feedbacks and the prevalence of alternate stable states. Coral Reefs 35, 857–865 (2016).

    ADS  Google Scholar 

  57. Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).

    Google Scholar 

  58. Knowlton, N. & Jackson, J. B. C. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. 6, 215–220 (2008).

    CAS  Google Scholar 

  59. Johnston, M. W. & Purkis, S. J. Spatial analysis of the invasion of lionfish in the western Atlantic and Caribbean. Mar. Pollut. Bull. 62, 1218–1226 (2011).

    CAS  PubMed  Google Scholar 

  60. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). This Review provides a scientific consensus on biodiversity, ecosystem functioning and their potential impacts on society.

    ADS  CAS  PubMed  Google Scholar 

  61. Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).

    PubMed  Google Scholar 

  62. Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).

    Google Scholar 

  63. Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013). This paper highlights the potential vulnerability of high-diversity systems owing to the loss of rare species with functional importance.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    ADS  CAS  PubMed  Google Scholar 

  66. Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    ADS  CAS  PubMed  Google Scholar 

  67. Gurney, G. G., Pressey, R. L., Cinner, J. E., Pollnac, R. & Campbell, S. J. Integrated conservation and development: evaluating a community-based marine protected area project for equality of socioeconomic impacts. Phil. Trans. R. Soc. B 370, 20140277 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Christie, P. et al. Improving human and environmental conditions through the Coral Triangle Initiative: progress and challenges. Curr. Opin. Env. Sust. 19, 169–181 (2016).

    Google Scholar 

  69. Johnson, A. E. Reducing bycatch in coral reef trap fisheries: escape gaps as a step towards sustainability. Mar. Ecol. Prog. Ser. 415, 201–209 (2010).

    ADS  Google Scholar 

  70. Barrett, C. B. & Constas, M. A. Toward a theory of resilience for international development applications. Proc. Natl Acad. Sci. USA 111, 14625–14630 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arias, A. Understanding and managing compliance in the nature conservation context. J. Environ. Manage. 153, 134–143 (2015).

    PubMed  Google Scholar 

  72. Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Change 20, 550–557 (2010).

    Google Scholar 

  73. Brown, K. Resilience, Development and Global Change (Routledge, 2016).

    Google Scholar 

  74. Keohane, R. O. The global politics of climate change: challenge for political science. Political Sci. Politics 48, 19–26 (2015).

    Google Scholar 

  75. Ruckelshaus, M., Klinger, T., Knowlton, N. & DeMaster, D. P. Marine ecosystem-based management in practice: scientific and governance challenges. Bioscience 58, 53–63 (2008).

    Google Scholar 

  76. McCook, L. J. et al. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl Acad. Sci. USA 107, 18278–18285 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lubchenco, J., Cerny-Chipman, E. B., Reimer, J. N. & Levin, S. A. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes, T. P., Bellwood, D. R., Folke, C., Steneck, R. S. & Wilson, J. New paradigms for supporting the resilience of marine ecosystems. Trends Ecol. Evol. 20, 380–386 (2005).

    PubMed  Google Scholar 

  79. Lam, V. Y. Y., Doropoulos, C. & Mumby, P. J. The influence of resilience-based management on coral reef monitoring: a systematic review. PLoS ONE 12, e0172064 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Hobbs, R. J., Hallett, L. M., Ehrlich, P. R. & Mooney, H. A. Intervention ecology: applying ecological science in the twenty-first century. Bioscience 61, 442–450 (2011).

    Google Scholar 

  81. van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS  PubMed  Google Scholar 

  83. Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    PubMed  Google Scholar 

  84. US National Marine Fisheries Service. Recovery Plan for Elkhorn Coral (Acropora palmata) and Staghorn Coral (A. cervicornis) http://www.nmfs.noaa.gov/pr/recovery/plans/final_acropora_recovery_plan.pdf (2015).

  85. Walker, B. et al. Looming global-scale failures and missing institutions. Science 325, 1345–1346 (2009).

    CAS  PubMed  Google Scholar 

  86. Keohane, R. O. & Victor, D. G. The regime complex for climate change. Perspect. Polit. 9, 7–23 (2011).

    Google Scholar 

  87. Levin, K., Cashore, B., Bernstein, S. & Auld, G. Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change. Policy Sci. 45, 123–152 (2012).

    Google Scholar 

  88. Bai, X. et al. Plausible and desirable futures in the Anthropocene: a new research agenda. Glob. Environ. Change 39, 351–362 (2016).

    Google Scholar 

  89. Biermann, F. et al. Navigating the Anthropocene: improving earth system governance. Science 335, 1306–1307 (2012). A key paper that emphasizes the need for governance approaches to changes that occur in response to human impacts on the environment.

    ADS  CAS  PubMed  Google Scholar 

  90. Cole, D. H. Advantages of a polycentric approach to climate change policy. Nature Clim. Change 5, 114–118 (2015).

    ADS  Google Scholar 

  91. Young, H. P. The evolution of social norms. Annu. Rev. Econom. 7, 359–387 (2015).

    Google Scholar 

  92. Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

    Google Scholar 

  93. Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed  Google Scholar 

  94. Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Phil. Trans. R. Soc. B 370, 20140270 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Clim. Change 2, 248–253 (2012).

    ADS  Google Scholar 

  96. Hartmann, D. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 2, 159–254 (Cambridge Univ. Press, 2013).

  97. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003). A foundational study that establishes the main physical characteristics of global climate change.

    Google Scholar 

  98. Lough, J. M. Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950–2011. J. Geophys. Res. 117, C09018 (2012).

    ADS  Google Scholar 

  99. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    ADS  CAS  PubMed  Google Scholar 

  100. Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecol. Evol. 1, 0014 (2016).

    Google Scholar 

  101. Baker, A. C. Reef corals bleach to survive change. Nature 411, 765–766 (2001).

    ADS  CAS  PubMed  Google Scholar 

  102. Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).

    ADS  CAS  PubMed  Google Scholar 

  103. Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).

    PubMed  Google Scholar 

  104. Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).

    CAS  PubMed  Google Scholar 

  105. Silverstein, R. N., Cunning, R. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).

    ADS  Google Scholar 

  106. Munday, P. L., Donelson, J. M. & Domingos, J. A. Potential for adaptation to climate change in a coral reef fish. Glob. Change Biol. 23, 307–317 (2017).

    ADS  Google Scholar 

  107. Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the seven institutions that supported this research, in Australia, the Netherlands and the United States. Six of the authors are supported by funding from the Australian Research Council's Centre of Excellence Program. Other funding support includes the Australian Commonwealth Government, the Netherlands Earth System Science Centre (NESSC), the Gordon and Betty Moore Foundation and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry P. Hughes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Contributions All authors contributed to the development of the paper. T.P.H. led the initial planning and writing. J.M.L. and J.K. undertook the climate analysis, I.v.d.L, M.S and E.v.N. carried out the modelling; M.L.B., J.E.C. and T.H.M. led the social science component; and D.R.B., G.S.C., T.P.H., J.B.C.J. and S.R.P. provided the ecological and evolutionary elements.

Reviewer Information Nature thanks T. Gouhier, R. Richmond and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com.reprints.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, T., Barnes, M., Bellwood, D. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017). https://doi.org/10.1038/nature22901

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22901

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene