Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Speciation gradients and the distribution of biodiversity

Subjects

Abstract

Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species–area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The relationship between rates of immigration, extinction and species origination and species number on islands of increasing size.
Figure 2: The species–area relationship for cichlid fish in African lakes.
Figure 3: Variation in ages of New World mammal species with latitude.
Figure 4: The relationship between diversification, speciation and latitude in birds.

References

  1. Belmaker, J. & Jetz, W. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 18, 563–571 (2015).

    Article  PubMed  Google Scholar 

  2. Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).

    Article  PubMed  Google Scholar 

  3. Ricklefs, R. E. & Schluter, D. (eds). Species Diversity in Ecological Communities (Univ. Chicago Press, 1993).

    Google Scholar 

  4. Vellend, M. The Theory of Ecological Communities (Princeton Univ. Press, 2016).

    Google Scholar 

  5. Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  6. Schluter, D. Speciation, ecological opportunity, and latitude. Am. Nat. 187, 1–18 (2016).

    Article  PubMed  Google Scholar 

  7. MacArthur, R. H. Patterns of communities in the tropics. Biol. J. Linn. Soc. 1, 19–30 (1969).

    Article  Google Scholar 

  8. Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006). A forward-looking perspective on the integration of community and diversification dynamics in the development of biodiversity gradients.

    Article  PubMed  Google Scholar 

  9. McPeek, M. A. Linking local species interactions to rates of speciation in communities. Ecology 77, 1355–1366 (1996). The pioneering conception of the role of biotic interactions within local communities in speciation and biodiversity gradients.

    Article  Google Scholar 

  10. Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. B 344, 305–311 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).

    Article  PubMed  Google Scholar 

  12. Allmon, W. D. & Sampson, S. D. in Species and Speciation in the Fossil Record (eds Allmon, W. D. & Yacobucci, M. M.) Ch. 4, 121–167 (Univ. Chicago Press, 2016).

    Book  Google Scholar 

  13. Schluter, D. in Endless Forms: Species and Speciation (eds Howard, D. J. & Berlocher, S. H.) Ch. 9, 114–129 (Oxford Univ. Press, 1998).

    Google Scholar 

  14. Price, T. Speciation in Birds (Roberts and Company, 2008).

    Google Scholar 

  15. Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).

    Google Scholar 

  16. Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010). In a meta-analysis of the flora and fauna of islands, the threshold island size for speciation in a taxon is shown to scale with the amount of gene flow that occurs between populations.

    Article  PubMed  Google Scholar 

  17. Marshall, C. R. Explaining latitudinal diversity gradients. Science 317, 451–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015).

    Article  PubMed  Google Scholar 

  19. Cornell, H. V. Is regional species diversity bounded or unbounded? Biol. Rev. Camb. Philos. Soc. 88, 140–165 (2013). Ecological interactions dampen rates of diversification as species diversity builds, but there is no hard upper bound on regional diversity.

    Article  PubMed  Google Scholar 

  20. Goldberg, E. E., Lancaster, L. T. & Ree, R. H. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol. 60, 451–465 (2011).

    Article  PubMed  Google Scholar 

  21. Jablonski, D., Huang, S., Roy, K. & Valentine, J. W. Shaping the latitudinal diversity gradient: new perspectives from a synthesis of paleobiology and biogeography. Am. Nat. 189, 1–12 (2017). A unified look at changing environments and the spatial and diversification dynamics of marine bivalves in the fossil record, including how they have helped to determine the latitudinal biodiversity gradient.

    Article  PubMed  Google Scholar 

  22. Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    Article  PubMed  Google Scholar 

  23. He, F., Gaston, K. J., Connor, E. F. & Srivastava, D. S. The local–regional relationship: immigration, extinction, and scale. Ecology 86, 360–365 (2005).

    Article  Google Scholar 

  24. Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).

    Google Scholar 

  25. Schluter, D. Evidence for ecological speciation and its alternative. Science 323, 737–741 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Schluter, D. & Conte, G. L. Genetics and ecological speciation. Proc. Natl Acad. Sci. USA 106, 9955–9962 (2009).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  27. Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature Commun. 8, 14363 (2017).

    Article  CAS  ADS  Google Scholar 

  28. Pigot, A. L., Tobias, J. A. & Jetz, W. Energetic constraints on species coexistence in birds. PLoS Biol. 14, e1002407 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wagner, C. E., Harmon, L. J. & Seehausen, O. Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487, 366–369 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Whittaker, R. H. Evolution of species diversity in land communities. Evol. Biol. 10, 1–67 (1977).

    ADS  Google Scholar 

  31. Schemske, D. W. in Speciation and Patterns of Diversity (eds Butlin, R., Bridle, J. & Schluter, D.) Ch. 12, 219–239 (Cambridge Univ. Press, 2009).

    Google Scholar 

  32. Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    Article  PubMed  Google Scholar 

  33. Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010).

    Article  PubMed  Google Scholar 

  34. Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 9569–9574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). Recent rates of speciation and diversification in birds show high longitudinal variation but little latitudinal variation.

    Article  CAS  ADS  PubMed  Google Scholar 

  38. Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  39. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

    Google Scholar 

  40. Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  42. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  43. Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847–850 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Wagner, C. E., Harmon, L. J. & Seehausen, O. Cichlid species–area relationships are shaped by adaptive radiations that scale with area. Ecol. Lett. 17, 583–592 (2014). The slope of the species–area relationship for African cichlid fish steepens sharply between small and large lakes, as geographical speciation rates rise.

    Article  PubMed  Google Scholar 

  45. Rosindell, J. & Phillimore, A. B. A unified model of island biogeography sheds light on the zone of radiation. Ecol. Lett. 14, 552–560 (2011).

    Article  PubMed  Google Scholar 

  46. Weir, J. T. & Price, T. D. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177, 462–469 (2011). Achieving secondary sympatry is a considerable rate-limiting step in bird speciation that happens faster in temperate regions than in the tropics.

    Article  PubMed  Google Scholar 

  47. Rabosky, D. L. & Glor, R. E. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl Acad. Sci. USA 107, 22178–22183 (2010).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  48. Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012). Much of the variation in species richness between regions can be explained statistically by time-integrated area and productivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).

    Article  Google Scholar 

  51. Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).

    Article  PubMed  Google Scholar 

  52. Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    Article  Google Scholar 

  53. Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  54. Gillman, L. N., Keeling, D. J., Ross, H. A. & Wright, S. D. Latitude, elevation and the tempo of molecular evolution in mammals. Proc. R. Soc. B 276, 3353–3359 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weir, J. T. & Schluter, D. Are rates of molecular evolution in mammals substantially accelerated in warmer environments? Proc. R. Soc. B 278, 1291–1293 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Weir, J. T. & Wheatcroft, D. A latitudinal gradient in rates of evolution of avian syllable diversity and song length. Proc. R. Soc. B 278, 1713–1720 (2011).

    Article  PubMed  Google Scholar 

  57. Yukilevich, R. Tropics accelerate the evolution of hybrid male sterility in Drosophila. Evolution 67, 1805–1814 (2013).

    Article  PubMed  Google Scholar 

  58. Powell, M. G. & Glazier, D. S. Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton. Paleobiology 43, 196–208 (2017).

    Article  Google Scholar 

  59. Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).

    Article  PubMed  Google Scholar 

  60. Pulido-Santacruz, P. & Weir, J. T. Extinction as a driver of avian latitudinal diversity gradients. Evolution 70, 860–872 (2016).

    Article  PubMed  Google Scholar 

  61. Rabosky, D. L., Title, P. O. & Huang, H. Minimal effects of latitude on present-day speciation rates in New World birds. Proc. R. Soc. B 282, 20142889 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rahbek, C. The elevational gradient of species richness: a uniform pattern? Ecography 18, 200–205 (1995).

    Article  Google Scholar 

  63. Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution 60, 842–855 (2006).

    Article  PubMed  Google Scholar 

  64. Hughes, C. E. & Atchison, G. W. C. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207, 275–282 (2015).

    Article  PubMed  Google Scholar 

  65. Madriñán, S., Cortés, A. J. & Richardson, J. E. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Front. Genet. 4, 192 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chek, A. A., Austin, J. D. & Lougheed, S. C. Why is there a tropical–temperate disparity in the genetic diversity and taxonomy of species? Evol. Ecol. Res. 5, 69–77 (2003).

    Google Scholar 

  67. Hughes, A. L. & Hughes, M. A. K. Coding sequence polymorphism in avian mitochondrial genomes reflects population histories. Mol. Ecol. 16, 1369–1376 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Martin, P. R. & McKay, J. K. Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58, 938–945 (2004).

    Article  PubMed  Google Scholar 

  69. Eo, S. H., Wares, J. P. & Carroll, J. P. Population divergence in plant species reflects latitudinal biodiversity gradients. Biol. Lett. 4, 382–384 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Adams, R. I. & Hadly, E. A. Genetic diversity within vertebrate species is greater at lower latitudes. Evol. Ecol. 27, 133–143 (2013).

    Article  Google Scholar 

  71. April, J., Hanner, R. H., Mayden, R. L. & Bernatchez, L. Metabolic rate and climatic fluctuations shape continental wide pattern of genetic divergence and biodiversity in fishes. PLoS ONE 8, e70296 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Wright, S., Keeling, J. & Gillman, L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc. Natl Acad. Sci. USA 103, 7718–7722 (2006).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  73. Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016). A map of α genetic diversity in more than 4,500 species of mammals and amphibians. Mean genetic diversity declines at higher latitudes, but the trend mainly seems to occur within — rather than between — species.

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  76. Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).

    Article  PubMed  Google Scholar 

  77. Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  78. Cowling, R. M., Rundel, P. W., Lamont, B. B., Kalin Arroyo, M. & Arianoutsou, M. Plant diversity in mediterranean-climate regions. Trends Ecol. Evol. 11, 362–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Latimer, A. M., Silander, J. A. & Cowling, R. M. Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science 309, 1722–1725 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  81. Cook, L. G., Hardy, N. B. & Crisp, M. D. C. Three explanations for biodiversity hotspots: small range size, geographical overlap and time for species accumulation. An Australian case study. New Phytol. 207, 390–400 (2015).

    Article  PubMed  Google Scholar 

  82. MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598 (1961).

    Article  Google Scholar 

  83. Recher, H. F. Bird species diversity and habitat diversity in Australia and North America. Am. Nat. 103, 75–80 (1969).

    Article  Google Scholar 

  84. Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).

    Article  Google Scholar 

  85. Vuilleumier, F. Bird species diversity in Patagonia (temperate South America). Am. Nat. 106, 266–271 (1972).

    Article  Google Scholar 

  86. Pinto-Ledezma, J. N., Simon, L. M., Diniz-Filho, J. A. F. & Villalobos, F. The geographical diversification of Furnariides: the role of forest versus open habitats in driving species richness gradients. J. Biogeogr. http://dx.doi.org/10.1111/jbi.12939 (2017).

  87. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  90. Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    Article  PubMed  Google Scholar 

  91. Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  93. Thomas, C. D. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30, 448–455 (2015).

    Article  PubMed  Google Scholar 

  94. Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

    Article  PubMed  Google Scholar 

  95. Thompson, K. A., Renaudin, M. & Johnson, M. T. J. Urbanization drives the evolution of parallel clines in plant populations. Proc. R. Soc. B 283, 20162180 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kwit, C., Moon, H. S., Warwick, S. I. & Stewart, C. N., Jr. Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends Biotechnol. 29, 284–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Piaggio, A. J. et al. Is it time for synthetic biodiversity conservation? Trends Ecol. Evol. 32, 97–107 (2017).

    Article  PubMed  Google Scholar 

  98. Rosenblum, E. B. et al. Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evol. Biol. 39, 255–261 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Triantis, K. A., Mylonas, M. & Whittaker, R. J. Evolutionary species–area curves as revealed by single-island endemics: insights for the inter-provincial species–area relationship. Ecography 31, 401–407 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to L. Harmon, D. Jablonski, W. Jetz, E. Miller, M. O'Connor, T. Price and M. Whitlock for comments and discussion, and to B. Freeman and W. Jetz for help with Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolph Schluter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks S. Gavrilets, W. Jetz and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com.reprints.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schluter, D., Pennell, M. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017). https://doi.org/10.1038/nature22897

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22897

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing