Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A challenge to lepton universality in B-meson decays

Abstract

One of the key assumptions of the standard model of particle physics is that the interactions of the charged leptons, namely electrons, muons and taus, differ only because of their different masses. Whereas precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, recent studies of B-meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. A confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagrams for standard-model decay processes.
Figure 2: Belle and LHCb single-event displays illustrating the reconstruction of semileptonic B-meson decays.
Figure 3: Extraction of the yield from Belle data.
Figure 4: Comparison of measurements with standard model predictions.
Figure 5: Extraction of the ratios and by maximum likelihood fits.
Figure 6: and measurements.
Figure 7: Diagrams for non-standard-model decay processes.

References

  1. Mann, R. B. An Introduction to Particle Physics and the Standard Model (CRC, 2010)

  2. Weinberg, S. The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge Univ. Press, 2013)

  3. Thomson, J. J. Carriers of negative electricity. In Nobel Lectures: Physics, 1901–1921 (Elsevier, 1967)

  4. Neddermeyer, S. H. & Anderson, C. D. The nature of cosmic ray particles. Phys. Rev. 51, 884–886 (1937)

    Article  ADS  CAS  Google Scholar 

  5. Perl, M. L. et al. Evidence for anomalous lepton production in e+e annihilation. Phys. Rev. Lett. 35, 1489–1492 (1975)

    Article  ADS  CAS  Google Scholar 

  6. Ablikim, M. et al. Precision measurement of the mass of the τ lepton. Phys. Rev. D 90, 012001 (2014)

    Article  ADS  CAS  Google Scholar 

  7. Lazzeroni, C. et al. Precision measurement of the ratio of the charged kaon leptonic decay rates. Phys. Lett. B 719, 326–336 (2013)

    Article  ADS  CAS  Google Scholar 

  8. Pohl, R. et al. The size of the proton. Nature 466, 213–216 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Pohl, R., Gilman, R., Miller, G. A. & Pahucki, K. Muonic hydrogen and the proton radius puzzle. Annu. Rev. Nucl. Part. Sci. 63, 175–204 (2013)

    Article  ADS  CAS  Google Scholar 

  10. Tanaka, M. Charged Higgs effects on exclusive semitauonic B decays. Z. Phys. C 67, 321–326 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Aoki, S. et al. Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 74, 2890 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Olive, K. A. et al. Review of particle physics. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  CAS  Google Scholar 

  13. Kobayashi, M. & Maskawa, T. CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  CAS  Google Scholar 

  14. Amhis, Y. et al. Averages of b-hadron, c-hadron, and τ-lepton properties. Preprint at http://arXiv.org/abs/1412.7515 (2014)

  15. Charles, J. et al. CP violation and the CKM matrix: assessing the impact of the asymmetric B factories. Eur. Phys. J. C 41, 1–131 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Körner, J. G. & Schuler, G. A. Exclusive semileptonic heavy meson decays including lepton mass effects. Z. Phys. C 46, 93–109 (1990)

    Article  ADS  Google Scholar 

  17. Na, H. et al. BDlν form factors at nonzero recoil and extraction of |V cb|. Phys. Rev. D 92, 054510 (2015); erratum 93, 119906 (2016)

    Article  ADS  CAS  Google Scholar 

  18. Fajfer, S., Kamenik, J. F. & Nisandzic, I. On the sensitivity to new physics. Phys. Rev. D 85, 094025 (2012)

    Article  ADS  CAS  Google Scholar 

  19. Bailey, J. A. et al. BDℓν form factors at nonzero recoil and |V cb| from 2+1-flavor lattice QCD. Phys. Rev. D 92, 034506 (2015)

    Article  ADS  CAS  Google Scholar 

  20. Aubert, B. et al. The BABAR detector. Nucl. Instrum. Methods A 479, 1–116 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Aubert, B. et al. The BABAR detector: upgrades, operation and performance. Nucl. Instrum. Methods A 729, 615–701 (2013)

    Article  ADS  CAS  Google Scholar 

  22. Abashian, A. et al. The Belle detector. Nucl. Instrum. Methods A 479, 117–232 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Alves, A. A. Jr et al. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008)

    Google Scholar 

  24. Dettori, F. Performance of the LHCb detector during the LHC proton runs 2010–2012. Nucl. Instrum. Methods A 732, 40–43 (2013)

    Article  ADS  CAS  Google Scholar 

  25. Feindt, M. et al. A hierarchical neuroBayes-based algorithm for full reconstruction of B mesons at B factories. Nucl. Instrum. Methods A 654, 432–440 (2011)

    Article  ADS  CAS  Google Scholar 

  26. Lees, J. P . et al. Measurement of an excess of decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013). Detailed description of the measurement of R D and R D* based on hadronic B tagging by BaBar and implication for potential interpretation in terms of two-Higgs doublet models

    Article  ADS  CAS  Google Scholar 

  27. Kronenbitter, B . et al. Measurement of the branching fraction of decays with the semileptonic tagging method. Phys. Rev. D 92, 051102(R) (2015). Currently the most precise measurement of decays by Belle based on semileptonic B tagging

    Article  ADS  CAS  Google Scholar 

  28. Hara, K. et al. Evidence for with a hadronic tagging method using the full data sample of Belle. Phys. Rev. Lett. 110, 131801 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Aubert, B. et al. A search for B++νℓ recoiling against . Phys. Rev. D 81, 051101 (2010)

    Article  ADS  CAS  Google Scholar 

  30. Lees, J. P. et al. Evidence of B+τ+ν decays with hadronic B tags. Phys. Rev. D 88, 031102 (2013)

    Article  ADS  CAS  Google Scholar 

  31. Heavy Flavor Averaging Group. Compilation of B+ and B0 leptonic branching fractions. Available at http://www.slac.stanford.edu/xorg/hfag/rare/ICHEP2016/radll/OUTPUT/HTML/radll_table4.html (October 2016)

  32. Huschle, M . et al. Measurement of the branching ratio of relative to decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015). Measurement of R D and R D* with hadronic B tagging by Belle and studies of implications for two-Higgs doublet model type II

    Article  ADS  CAS  Google Scholar 

  33. Sato, Y . et al. Measurement of the branching ratio of relative to decays with semileptonic tagging. Phys. Rev. D 94, 072007 (2016). Most recent measurement of R D* by Belle based on semileptonic B tagging, placing constraints on possible new-physics scenarios.

    Article  ADS  CAS  Google Scholar 

  34. Aaij, R. et al. Measurement of the ratio of branching fractions . Phys. Rev. Lett. 115, 111803 (2015); addendum 115, 159901(2015). First measurement of R D* at pp collider by LHCb

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Aubert, B. et al. Observation of the semileptonic decays and evidence for . Phys. Rev. Lett. 100, 021801 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Aubert, B. et al. Measurement of the semileptonic decays and . Phys. Rev. D 79, 092002 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Matyja, A. et al. Observation of B0D*τ+ντ decay at Belle. Phys. Rev. Lett. 99, 191807 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Bozek, A. et al. Observation of and evidence for at Belle. Phys. Rev. D 82, 072005 (2010)

    Article  ADS  CAS  Google Scholar 

  39. Heavy Flavor Averaging Group. Average of D and D* for winter 2016. Available at http://www.slac.stanford.edu/xorg/hfag/semi/winter16/winter16_dtaunu.html (March 2016)

  40. Chatrchyan, S. et al. Search for a W′ boson decaying to a bottom quark and a top quark in pp collisions at TeV. Phys. Lett. B 718, 1229–1251 (2013)

    Article  ADS  CAS  Google Scholar 

  41. Aad, G. et al. Search for W′ → tb in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of = 8 TeV with the ATLAS detector. Phys. Lett. B 743, 235–255 (2015)

    Article  ADS  CAS  Google Scholar 

  42. Prieels, R. et al. Measurement of the parameter ξ′′ in polarized muon decay and implications on exotic couplings of the leptonic weak interaction. Phys. Rev. D 90, 112003 (2014)

    Article  ADS  CAS  Google Scholar 

  43. Stahl, A. Physics with Tau Leptons Vol. 160 of Springer Tracts in Modern Physics (Springer, 2000)

  44. Chatrchyan, S. et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  CAS  Google Scholar 

  45. Aad, G. et al. Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012)

    Article  ADS  CAS  Google Scholar 

  46. Barger, V. D., Hewett, J. L. & Phillips, R. J. N. New constraints on the charged Higgs sector in two-Higgs-doublet models. Phys. Rev. D 41, 3421–3441 (1990)

    Article  ADS  CAS  Google Scholar 

  47. Gunion, J. F. & Haber, H. E. Higgs bosons in supersymmetric models (I). Nucl. Phys. B 272, 1–76 (1986); erratum 402, 567 (1993)

    Article  ADS  Google Scholar 

  48. Dorsner, I., Fajfer, S., Greljo, A., Kamenik, J. F. & Kosnik, N. Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rep. 641, 1–68 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  49. Freytsis, M., Ligeti, Z. & Ruderman, J. T. Flavor models for . Phys. Rev. D 92, 054018 (2015)

    Article  ADS  CAS  Google Scholar 

  50. Datta, A., Duraisamy, M. & Ghosh, D. Diagnosing new physics in bντ decays in the light of the recent BABAR result. Phys. Rev. D 86, 034027 (2012)

    Article  ADS  CAS  Google Scholar 

  51. Crivellin, A ., Greub, C. & Kokulu, A. Explaining BDτν, BD*τν and Bτν in a 2HDM of type III. Phys. Rev. D 86, 054014 (2012). Interpretation of R D and R D* measurements in terms of a two-Higgs doublet model of type III

    Article  ADS  CAS  Google Scholar 

  52. Fajfer, S., Kamenik, J. F., Nisandzic, I. & Zupan, J. Implications of lepton flavor universality violations in B decays. Phys. Rev. Lett. 109, 161801 (2012)

    Article  ADS  PubMed  CAS  Google Scholar 

  53. Sakaki, Y., Tanaka, A., Tayduganov, M. & Watanabe, R. Testing leptoquark models in . Phys. Rev. D 88, 094012 (2013). Interpretation of R D and R D* measurements in terms of leptoquark models.

    Article  ADS  CAS  Google Scholar 

  54. Dumont, B., Nishiwaki, K. & Watanabe, R. LHC constraints and prospects for S1 scalar leptoquark explaining the anomaly. Phys. Rev. D 94, 034001 (2016)

    Article  ADS  CAS  Google Scholar 

  55. Bauer, M. & Neubert, M. Minimal leptoquark explanation for the, R K, and (g − 2)m anomalies. Phys. Rev. Lett. 116, 141802 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Buchmüller, W., Rückl, R. & Wyler, D. Leptoquarks in lepton – quark collisions. Phys. Lett. B 191, 442–448 (1987); erratum 448, 320 (1999)

    Article  ADS  Google Scholar 

  57. Chekanov, S. et al. A Search for resonance decays to lepton + jet at HERA and limits on leptoquarks. Phys. Rev. D 68, 052004 (2003)

    Article  ADS  CAS  Google Scholar 

  58. Aaron, F. D. et al. Search for first generation leptoquarks in ep collisions at HERA. Phys. Lett. B 704, 388–396 (2011)

    Article  ADS  CAS  Google Scholar 

  59. Aad, G. et al. Search for third generation scalar leptoquarks in pp collisions at = 7 TeV with the ATLAS detector. J. High Energy Phys. 6, 33 (2013)

    ADS  Google Scholar 

  60. Khachatryan, V. et al. Search for pair production of third-generation scalar leptoquarks and top squarks in pp collisions at =8 TeV. Phys. Lett. B 739, 229–249 (2014)

    Article  ADS  CAS  Google Scholar 

  61. Hirose, S. et al. Measurement of the τ lepton polarization and R(D*) in the decay . Preprint at http://arXiv.org/abs/1612.00529 (2016)

  62. Aaij, R. et al. Test of lepton universality using B+K++ decays. Phys. Rev. Lett. 113, 151601 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Wei, J. T. et al. Measurement of the differential branching fraction and forward-backward asymmetry for B+K(*)+. Phys. Rev. Lett. 103, 171801 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  64. Aaltonen, T. et al. Measurements of the angular distributions in the decays at CDF. Phys. Rev. Lett. 108, 081807 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Lees, J. P. et al. Measurement of branching fractions and rate asymmetries in the rare decays BK(*)+. Phys. Rev. D 86, 032012 (2012)

    Article  ADS  CAS  Google Scholar 

  66. Hiller, G. & Schmaltz, M. R K and future bsℓℓ physics beyond the standard model opportunities. Phys. Rev. D 90, 054014 (2014)

    Article  ADS  CAS  Google Scholar 

  67. Becˇirevic´, D., Fajfer, S., Košnik, N. & Olcyr, S. Leptoquark model to explain the B-physics anomalies, R K and R D . Phys. Rev. D 94, 115021 (2016)

    Article  ADS  Google Scholar 

  68. Aaij, R. et al. Angular analysis of the B0K*0μ+μ decay using 3 fb−1 of integrated luminosity. J. High Energy Phys. 2, 104 (2016)

    Article  ADS  Google Scholar 

  69. Wehle, S. et al. Lepton-flavor-dependent angular analysis of BK*ℓ+. Preprint at http://arXiv.org/abs/1612.05014 (2016)

  70. Sakaki, Y., Tanaka, M., Tayduganov, A. & Watanabe, R. Probing new physics with q2 distributions in . Phys. Rev. D 91, 114028 (2015)

    Article  ADS  CAS  Google Scholar 

  71. Alonso, R., Kobach, A. & Martin Camalich, J. New physics in the kinematic distributions of . Phys. Rev. D 94, 094021 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We recognize the contributions and dedication of our colleagues in the large international collaborations supporting the operation of the BaBar (M.F.S., R.K., V.L.), Belle (T.K., Y.S.) and LHCb (G.C., B.H.) detectors, the data processing and the data analyses on which the results presented in this Review are based. None of this would have been achieved without the efforts of the teams at SLAC, KEK and CERN who achieved excellent beam conditions and delivered high luminosities of the e+e and pp storage rings over many years. We acknowledge support from the Organisation for Scientific Research (NWO) of the Netherlands, the US National Science Foundation and Department of Energy, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Excellence Cluster of the DFG of Germany: Origin and Structure of the Universe, and the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Vera Lüth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks G. Isidori and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ciezarek, G., Franco Sevilla, M., Hamilton, B. et al. A challenge to lepton universality in B-meson decays. Nature 546, 227–233 (2017). https://doi.org/10.1038/nature22346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22346

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing