Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens

A Correction to this article was published on 13 June 2018

This article has been updated

Abstract

Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day ‘modern’ morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens1 or evolved gradually over the last 400 thousand years2. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating)3, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Facial reconstruction of Irhoud 10.
Figure 2: Irhoud 11 mandible (lateral and occlusal views).
Figure 3: Comparative shape analysis.

Similar content being viewed by others

Change history

  • 13 June 2018

    In the originally published version of this Letter, the PC1 and PC2 values in Fig. 3a were incorrect; in addition, the enumeration of Qafzeh samples should have been 'Qafzeh (9, 25)', and Extended Data Fig. 1c and Extended Data Table 2 have been altered accordingly. This has been corrected online.

References

  1. Stringer, C. Modern human origins: progress and prospects. Phil. Trans. R. Soc. B 357, 563–579 (2002)

    PubMed  PubMed Central  Google Scholar 

  2. Bräuer, G. The origin of modern anatomy: by speciation or intraspecific evolution? Evol. Anthropol. 17, 22–37 (2008)

    Google Scholar 

  3. Richter, D. et al. The age of the Jebel Irhoud (Morocco) hominins and the origins of the Middle Stone Age. Nature http://dx.doi.org/10.1038/nature22335 (2017)

  4. Ennouchi, E. Le deuxième crâne de l’homme d’Irhoud. Annales de Paléontologie (Vértébrés) LIV, 117–128 (1968)

    Google Scholar 

  5. Hublin, J.-J. & Tillier, A. M. in Aspects of Human Evolution Vol. 21 Symposia of the Society for the study of Human Biology, Volume XXI (ed. Stringer, C. B. ) 167–186 (Taylor & Francis, 1981)

    Google Scholar 

  6. Hublin, J.-J., Tillier, A. M. & Tixier, J. L’humerus d’enfant moustérien (Homo 4) du Jebel Irhoud (Maroc) dans son contexte archéologique. Bull. Mem. Soc. Anthropol. Paris 4, 115–141 (1987)

    Google Scholar 

  7. Tixier, J ., Brugal, J.-P ., Tillier, A.-M ., Bruzeket, J . & Hublin, J.-J. in Actes des 1ères Journées Nationales d’Archéologie et du Patrimoine. Préhistoire Vol. 1 149–153 (Société Marocaine d’Archéologie et du Patrimoine, 2001)

    Google Scholar 

  8. Amani, F. & Geraads, D. Le gisement moustérien du Djebel Irhoud, Maroc: précisions sur la faune et la biochronologie, et description d’un nouveau reste humain. Comptes Rendus à l'Académie des Sciences de Paris 316, 847–852 (1993)

    Google Scholar 

  9. Ennouchi, E. Un Néanderthalien: l’homme du Jebel Irhoud (Maroc). Anthropologie 66, 279–299 (1962)

    Google Scholar 

  10. Stringer, C. B in Recent advances in Primatology. (eds Chivers, D. J . & Joysey, K. A. ) 395–418 (Academic, 1978)

  11. Hublin, J.-J. Recent human evolution in northwestern Africa. Phil. Trans. R. Soc. B 337, 185–191 (1992)

    ADS  CAS  PubMed  Google Scholar 

  12. Geraads, D. et al. The rodents from the late middle Pleistocene hominid-bearing site of J’bel Irhoud, Morocco, and their chronological and paleoenvironmental implications. Quat. Res. 80, 552–561 (2013)

    Google Scholar 

  13. Smith, T. M. et al. Earliest evidence of modern human life history in North African early Homo sapiens. Proc. Natl Acad. Sci. USA 104, 6128–6133 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gonder, M. K., Mortensen, H. M., Reed, F. A., de Sousa, A. & Tishkoff, S. A. Whole-mtDNA genome sequence analysis of ancient African lineages. Mol. Biol. Evol. 24, 757–768 (2007)

    CAS  PubMed  Google Scholar 

  15. McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005)

    ADS  CAS  PubMed  Google Scholar 

  16. White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742–747 (2003)

    ADS  CAS  PubMed  Google Scholar 

  17. Smith, F. H. in Continuity or Replacement, Controversies in Homo sapiens evolution (eds Bräuer, G . & Smith, F. H. ) 145–156 (A. A. Balkema, Zagreb, 1992)

  18. Bruner, E. & Pearson, O. Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol. Sci. 121, 31–41 (2013)

    Google Scholar 

  19. Bermúdez de Castro, J. M. & Martinón-Torres, M. Evolutionary interpretation of the modern human-like facial morphology of the Atapuerca Gran Dolina-TD6 hominins. Anthropol. Sci. 122, 149–155 (2014)

    Google Scholar 

  20. Schwartz, J. H. & Tattersall, I. The human chin revisited: what is it and who has it? J. Hum. Evol. 38, 367–409 (2000)

    CAS  PubMed  Google Scholar 

  21. Trinkaus, E. Dental remains from the Shanidar adult Neanderthals. J. Hum. Evol. 7, 369–382 (1978)

    Google Scholar 

  22. Gunz, P. et al. A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62, 300–313 (2012)

    PubMed  Google Scholar 

  23. Klein, R. G. The Human Career: Human Biological and Cultural Origins 3rd edn (Chicago Univ. Press, 2009)

  24. Grün, R. et al. Direct dating of Florisbad hominid. Nature 382, 500–501 (1996)

    ADS  PubMed  Google Scholar 

  25. Stringer, C. The Origin of Our Species. (Allen Lane, Penguin, 2011)

  26. Harvati, K . et al. The later Stone Age calvaria from Iwo Eleru, Nigeria: morphology and chronology. PLoS ONE 6, e24024 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arsuaga, J. L. et al. Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363 (2014)

    ADS  CAS  PubMed  Google Scholar 

  29. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weaver, T. D. Did a discrete event 200,000–100,000 years ago produce modern humans? J. Hum. Evol. 63, 121–126 (2012)

    PubMed  Google Scholar 

  31. Wollny, G. et al. MIA - a free and open source software for gray scale medical image analysis. Source Code Biol. Med. 8, 20 (2013)

    PubMed  PubMed Central  Google Scholar 

  32. Bookstein, F. L. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1, 225–243 (1997)

    CAS  PubMed  Google Scholar 

  33. Gunz, P., Mitteroecker, P. & Bookstein, F. L. in Modern Morphometrics in Physical Anthropology. (ed. Slice, D.E. ) 73–98 (Kluwer Academic/Plenum Publishers, 2005)

  34. Gunz, P. & Mitteroecker, P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24, 103–109 (2013)

    Google Scholar 

  35. Wiley, D. F . et al. Evolutionary Morphing. In 16th IEEE Visualization Conference (VIS 2005) 55, 431–438 (American Journal of Physical Anthropology, 2005)

    Google Scholar 

  36. Freidline, S. E., Gunz, P., Harvati, K. & Hublin, J.-J. Middle Pleistocene human facial morphology in an evolutionary and developmental context. J. Hum. Evol. 63, 723–740 (2012)

    PubMed  Google Scholar 

  37. Neubauer, S., Gunz, P. & Hublin, J.-J. The pattern of endocranial ontogenetic shape changes in humans. J. Anat. 215, 240–255 (2009)

    PubMed  PubMed Central  Google Scholar 

  38. Harvati, K., Gunz, P. & Grigorescu, D. Cioclovina (Romania): affinities of an early modern European. J. Hum. Evol. 53, 732–746 (2007)

    PubMed  Google Scholar 

  39. Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011)

    ADS  CAS  PubMed  Google Scholar 

  40. Bailey, S. E., Benazzi, S. & Hublin, J.-J. Allometry, merism, and tooth shape of the upper deciduous M2 and permanent M1. Am. J. Phys. Anthropol. 154, 104–114 (2014)

    PubMed  Google Scholar 

  41. Benazzi, S. et al. Cervical and crown outline analysis of worn Neanderthal and modern human lower second deciduous molars. Am. J. Phys. Anthropol. 149, 537–546 (2012)

    PubMed  Google Scholar 

  42. Skinner, M. M., Gunz, P., Wood, B. A. & Hublin, J.-J. Enamel–dentine junction (EDJ) morphology distinguishes the lower molars of Australopithecus africanus and Paranthropus robustus. J. Hum. Evol. 55, 979–988 (2008)

    PubMed  Google Scholar 

  43. Skinner, M. M., Gunz, P., Wood, B. A., Boesch, C. & Hublin, J.-J. Discrimination of extant Pan species and subspecies using the enamel–dentine junction morphology of lower molars. Am. J. Phys. Anthropol. 140, 234–243 (2009)

    PubMed  Google Scholar 

  44. Spoor, F. et al. Reconstructed Homo habilis type OH 7 suggests deep-rooted species diversity in early Homo. Nature 519, 83–86 (2015)

    ADS  CAS  PubMed  Google Scholar 

  45. Beucher, S . & Lantuéjoul, C. in International Workshop on Image Processing: Real-Time Edge and Motion Detection 2.1–2.12 (Rennes, France, 1979)

  46. Le Cabec, A., Gunz, P., Kupczik, K., Braga, J. & Hublin, J.-J. Anterior tooth root morphology and size in Neanderthals: taxonomic and functional implications. J. Hum. Evol. 64, 169–193 (2013)

    PubMed  Google Scholar 

  47. Mitteroecker, P. & Gunz, P. Advances in geometric morphometrics. Evol. Biol. 36, 235–247 (2009)

    Google Scholar 

  48. Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual reconstruction of hominin crania. J. Hum. Evol. 57, 48–62 (2009)

    PubMed  Google Scholar 

  49. Rohlf, F. J. & Slice, D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990)

    Google Scholar 

  50. Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011)

    Google Scholar 

  51. R Development Core Team. R: a language and environment for statistical computing http://www.r-project.org(R Foundation for Statistical Computing, Vienna, Austria, 2012)

  52. Arambourg, C. & Biberson, P. The fossil human remains from the Paleolithic site of Sidi Abderrahman (Morocco). Am. J. Phys. Anthropol. 14, 467–489 (1956)

    CAS  PubMed  Google Scholar 

  53. Sausse, F. La mandibule atlanthropienne de la carrière Thomas I (Casablanca). Anthropologie 79, 81–112 (1975)

    Google Scholar 

  54. Rightmire, G. P. Comparative studies of Late Pleistocene human remains from Klasies River Mouth, South Africa. J. Hum. Evol. 20, 131–156 (1991)

    Google Scholar 

  55. Stewart, T. D. in Annual Report of the Smithsonian Institution 521–533 (US Government Printing Office, Washington, 1962)

  56. Tillier, A.-M. in Le Squelette moustérien de Kébara 2 97–112 (Centre National de la Recherche Scientifique, Paris, 1991)

    Google Scholar 

  57. Stewart, T. D. The Neanderthal skeletal remains from Shanidar Cave, Iraq: a summary of findings to date. Proc. Am. Phil. Soc. 121, 121–165 (1977)

    Google Scholar 

  58. Trinkaus, E. The Shanidar Neanderthals (Academic, 1983)

  59. Leroi-Gourhan, A. Étude des Restes Humains Fossiles provenant des Grottes d’Arcy-sur-Cure (Masson et Cie, 1958)

  60. Daura, J. et al. A Neandertal mandible from the Cova del Gegant (Sitges, Barcelona, Spain). J. Hum. Evol. 49, 56–70 (2005)

    CAS  PubMed  Google Scholar 

  61. Topinard, P. Les caracteres simiens de la machoire de la Naulette. Rev. Antropol. 15, 385–431 (1886)

    Google Scholar 

  62. Blake, C. C. On a human jaw from the cave of La Naulette, near Dinant, Belgium. Anthropol. Rev. 5, 294–303 (1867)

    Google Scholar 

  63. Leguebe, A. & Toussaint, M. La Mandibule et les Cubitus de la Naulette: Morphologie et Morphométrie 15 (Editions du Centre National de la Recherche Scientifique, 1988)

  64. Heim, J. L. Les hommes fossiles de La Ferrassie (Dordogne) et le problem de la definition des Neandertaliens classiques. III. Squelette céphalique. Anthropologie 78, 321–378 (1974)

    Google Scholar 

  65. de Lumley, M.-A. Les Néandertaliens de la grotte de l’Hortus. Etudes Quaternaires 1, 375–385 (1972)

    Google Scholar 

  66. Condemi, S. et al. Possible interbreeding in late Italian Neanderthals? New data from the Mezzena jaw (Monti Lessini, Verona, Italy). PLoS ONE 8, e59781 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Corrain, C. Resti scheletrici umani del ‘Riparo Mezzena’. Memorie del Museo civico di Storia naturale di Verona 16, 97–101 (1968)

    Google Scholar 

  68. Walker, M. J., Lombardi, A. V., Zapata, J. & Trinkaus, E. Neandertal mandibles from the Sima de las Palomas del Cabezo Gordo, Murcia, southeastern Spain. Am. J. Phys. Anthropol. 142, 261–272 (2010)

    PubMed  Google Scholar 

  69. Martin, H. Machoire humaine moustérienne trouvée dans la station de La Quina. L’homme préhistorique 13, 3–21 (1926)

    Google Scholar 

  70. Martin, H. Position stratigraphique des Ossements humains recueillis dans le Moustérien de La Quina de 1908 à 1912. Bull. Soc. Préhistorique 9, 700–709 (1912)

    Google Scholar 

  71. Martin, H. L’Homme fossile de la Quina. (Libraire Octave Doin, 1923)

  72. Pap, I., Tillier, A. M., Arensburg, B. & Chech, M. The Subalyuk Neanderthal remains (Hungary): a re-examination. Ann. Hist. Nat. Mus. Natl. Hung. 88, 233–270 (1996)

    Google Scholar 

  73. Sanchez, F. Comparative biometrical study of the Mousterian mandible from Cueva del Boquete de Zafarraya (Málaga, Spain). Hum. Evol. 14, 125–138 (1999)

    Google Scholar 

  74. Vlcˇek, E. Fossile Menschenfunde von Weimar-Ehringsdorf, Weimarer Monographien zur Ur- und Frühgeschichte Vol. 30 (Landesamt für Archäologische Denkmalpflege, 1993)

  75. Condemi, S. Les néandertaliens de La Chaise: abri Bourgeois-Delaunay. Comité des travaux historiques et scientifiques (CTHS, 2001)

  76. Bar-Yosef, O . & Vandermeersch, B . (eds) Le squelette moustérien de Kébara 2. (Editions du Centre National de la Recherche Scientifique, 1991)

  77. Arambourg, C . & Hoffstetter, R. Le gisement de Ternifine Vol. 1. (Masson, 1963)

  78. Hooton, E.A ., Hencken, H.O & Snow, Ch. E. The ancient Palestinian: Skhu¯ l V reconstruction. 17, 5–10 (American School of Prehistoric Research, 1953)

    Google Scholar 

  79. Sollas, W. J. The Chancelade skull. J. R. Anthropol. Inst. 57, 89–122 (1927)

    Google Scholar 

  80. Martin, H. Caractères des squelettes humains quaternaires de la vallée du Roc (Charente). Bull. Mem. Soc. Anthropol. Paris 8, 103–129 (1927)

    Google Scholar 

  81. Vercellotti, G., Alciati, G., Richards, M. P. & Formicola, V. The Late Upper Paleolithic skeleton Villabruna 1 (Italy): a source of data on biology and behavior of a 14,000 year-old hunter. J. Anthropol. Sci. 86, 143–163 (2008)

    PubMed  Google Scholar 

  82. Formicola, V. Una mandibola umana dal deposito dell’Epigravettiano finale delle Arene Candite (scavi 197O). Rev. Antropol. 64, 271–278 (1986)

    Google Scholar 

  83. Odano, A. M. & Riquet, R. Le gisement préhistorique de Dar-es-Soltane 2. Champ de tir de El Menzeh à Rabat (Maroc). Note préliminaire. 2-Étude anthropologique des restes post-atériens. Bull. d’Archéologie Marocaine 11, 25–63 (1978)

    Google Scholar 

  84. Debénath, A. Nouveaux restes humains atériens du Maroc. CR Acad. Sci. Paris 290, 851–852 (1980)

    Google Scholar 

  85. Crognier, E. & Dupouy-Madre, M. Les Natoufiens du Nahal Oren (Ouadi Fallah) Etude anthropologique. Paéorient 2, 103–121 (1974)

    Google Scholar 

  86. Henke, W. Vergleichend-morphologische Kennzeichnung der Jungpaläolithiker von Oberkassel bei Bonn. Z. Morphol. Anthropol. 75, 27–44 (1984)

    CAS  PubMed  Google Scholar 

  87. Hershkovitz, I. et al. Ohalo II H2: a 19,000-year-old skeleton from a water-logged site at the Sea of Galilee, Israel. Am. J. Phys. Anthropol. 96, 215–234 (1995)

    CAS  PubMed  Google Scholar 

  88. Soficaru, A., Dobos, A. & Trinkaus, E. Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proc. Natl Acad. Sci. USA 103, 17196–17201 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Crevecoeur, I. Etude anthropologique des restes humains de Nazlet Khater (Paléolithique Superieur, Egypte). PhD Thesis, Université Sciences et Technologies Bordeaux I (2006)

  90. Thoma, A. Morphology and affinities of the Nazlet Khater man. J. Hum. Evol. 13, 287–296 (1984)

    Google Scholar 

  91. Anderson, J. E. In The Prehistory of Nubia Vol. 2 (ed. Wendorf, F. ) 996–1040 (Southern Methodist Univ. Press,1968)

    Google Scholar 

  92. Crevecoeur, I. From the Nile to the Danube: a comparison of the Nazlet Khater 2 and Oase 1 early modern human mandibles. Anthropologie 42, 203–213 (2004)

    Google Scholar 

  93. Trinkaus, E. et al. An early modern human from the Pes¸ tera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 11231–11236 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trinkaus, E. & Svoboda, J. (eds) Early Modern Human Evolution in Central Europe. The People of Dolní Veˇ stonice and Pavlov. The Dolni Vestonice Studies Vol. 12 (Oxford Univ. Press, 2006)

  95. Sládek, V ., Trinkaus, E ., Hillson, S. W . & Holliday, T. W. The People of the Pavlovian. Skeletal Catalogue and Osteometrics of the Gravettian Fossil Hominids from Dolni Vestonice and Pavlov. The Dolni Vestonice Studies Vol. 5 1–244 (BRNO, 2000)

    Google Scholar 

  96. Drozdová, E. The evaluation of a rediscovered fragment of human lower jaw, No 21 from Prˇedmostí u Prˇerova. Archeologické rozhledy 53, 452–460 (2001)

    Google Scholar 

  97. Dutour, O. Palimpseste paléoanthropologique sur l’«Homme fossile d’Asselar» (Sahara). Travaux du Laboratoire d’Anthropologie et de Préhistoire des Pays de la Méditerranée Occidentale 1, 73–83 (1992)

    Google Scholar 

  98. Gambier, D. Vestiges humains du gisement d’Isturitz (Pyrénées—Atlantiques): étude anthropologique et analyse des traces d’action humaine intentionelle. Antiquités nationales 22–23, 9–26 (1990)

    Google Scholar 

  99. Bräuer, G. & Mehlman, M. J. Hominid molars from a middle Stone Age level at the Mumba Rock Shelter, Tanzania. Am. J. Phys. Anthropol. 75, 69–76 (1988)

    PubMed  Google Scholar 

  100. Protsch, R. R. R. Di Archäologischen und Anthropologischen Ergebnisse der Kohl-Larsen-Expeditionen in Nord-Tanzania 1933–1939. (Institut für Urgeschichte der Universität Tübingen, 1981)

  101. Wood, B. A. & Van Noten, F. L. Preliminary observations on the BK 8518 mandible from Baringo, Kenya. Am. J. Phys. Anthropol. 69, 117–127 (1986)

    CAS  PubMed  Google Scholar 

  102. Rightmire, G. P. Middle Pleistocene hominids from Olduvai Gorge, northern Tanzania. Am. J. Phys. Anthropol. 53, 225–241 (1980)

    CAS  PubMed  Google Scholar 

  103. Bermúdez de Castro, J. M. Dental remains from Atapuerca (Spain) I. Metrics. J. Hum. Evol. 15, 265–287 (1986)

    Google Scholar 

  104. Grine, F. E. & Franzen, J. L. Fossil hominid teeth from the Sangiran Dome (Java, Indonesia). Courier Forschungsinstitut Senckenberg 171, 75–103 (1994)

    Google Scholar 

  105. Le Cabec, A., Gunz, P., Kupczik, K., Braga, J. & Hublin, J.-J. Anterior tooth root morphology and size in Neanderthals: taxonomic and functional implications. J. Hum. Evol. 64, 169–193 (2013)

    PubMed  Google Scholar 

  106. Turner, C. G. II, Nichol, C. R. & Scott, G. R. Advances in Dental Anthropology (eds Kelley, M., & Larsen, C. ) 13–31 (Wiley Liss, 1991)

  107. Bailey, S. E. Neandertal Dental Morphology: Implications for modern human origins. PhD thesis, Arizona State Univ. (2002)

Download references

Acknowledgements

The research program at Jebel Irhoud is jointly conducted and supported by the Moroccan Institut National des Sciences de l’Archéologie et du Patrimoine and the Department of Human Evolution of the Max Planck Institute for Evolutionary Anthropology. We are grateful to the many curators and colleagues who, over the years, gave us access to recent and fossil hominin specimens for computed tomography scanning or analysis, to E. Trinkaus for providing comparative data and to C. Kiarie, M. Lui, C. Piot, D. Plotzki, A. Buchenau and H. Temming for their technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by J.-J.H., A.B.-N. and P.G. Cranial metrical and non-metrical data were compiled and analysed by J.-J.H., A.B.-N., S.E.F., S.N., K.H. and P.G. Mandibular metrical and non-metrical data were compiled and analysed by J.-J.H. and I.B. Dental metrical and non-metrical data were compiled and analysed by S.E.B., M.M.S., A.L.C. and S.B. J.-J.H. and P.G. wrote the manuscript with contributions from all other authors.

Corresponding authors

Correspondence to Jean-Jacques Hublin or Philipp Gunz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. G. Klein, C. Stringer and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Mandibular morphology.

a, Symphyseal section of the Irhoud 11 mandible showing the mental angle. b, Mental area of Irhoud 11 before virtual reconstruction (top) and Irhoud 3 (bottom). Both images are surface models generated from micro-computed tomography data. c, Bivariate plot of mandibular corpus breadth versus height at the mental foramen. Irhoud 11 (pink star) falls within the EMH distribution and has one of the largest corpus heights among Middle to Late Pleistocene hominins. Values are in mm. n indicates sample size. Data sources and sample compositions can be found in the Methods. Scale bar, 20 mm.

Extended Data Figure 2 Dental morphology.

a, Shape–space PCA plot of Late Early and Middle Pleistocene archaic Homo, Neanderthals and RMH M1 crown outlines. The deformed mean crown outlines in the four directions of the PCs are drawn at the extremity of each axis. Sample compositions and abbreviations can be found in the Methods. b, EDJ morphology of the M2 and P4. Top left, the PCA analysis of the EDJ shape of the M2 places Irhoud 11 intermediate between H. erectus and RMH (along with other north Africa fossil humans) and distinct from Neanderthals. Surface models illustrate EDJ shape changes along PC1 (bottom left) and PC2 (top right); the former separating H. erectus from RMH, Neanderthals and north African EMH and the latter separating Neanderthals from RMH and north African EMH. Bottom right, a PCA analysis of the EDJ shape of the P4 groups Irhoud 11 with modern and fossil humans.

Extended Data Figure 3 Shape analysis of I2 roots.

A between-group PCA shows a complete separation between Neanderthals and a worldwide sample of recent modern humans based on subtle shape differences. Irhoud 11 (pink star) plots at the fringes of RMH, close to the EMH from Contrebandiers 1 (Tem). Colour-coded Procrustes group mean shapes are plotted in the same orientation as the I2 root surface of Irhoud 11. Although Irhoud 11 is more similar, overall, to Neanderthals in terms of root size, its root shape is clearly modern. The H. erectus specimen KNM-WT 15000 and hypothetical EMH Tabun C2 have incisor root shapes similar to Neanderthals, suggesting that roots that are labially more convex than in RMH represent a conserved primitive condition with limited taxonomical value. Sample compositions and abbreviations can be found in the Methods.

Extended Data Figure 4 Shape analysis of the external vault.

a, PC scores of PC1 and PC2 of external braincase shape in H. erectus, archaic Middle Pleistocene Homo, geographically diverse RMH and Neanderthals. Results are consistent with the analysis of endocranial shape (Fig. 3a). However, several EMH and Upper Palaeolithic specimens fall outside the RMH variation. This is probably owing to the projecting supraorbital tori in these specimens. b, Shape changes associated with PC1 (two standard deviations in either direction) shown as thin-plate spline deformation grids in lateral and oblique view. PC1 captures a contrast between elongated braincases with projecting supraorbital tori (low scores, in black) and a more globular braincase with gracile supraorbital tori (high scores, in red). Sample compositions and abbreviations can be found in the Methods.

Extended Data Figure 5 Facial and endocranial shape differences among Homo groups.

Visualizations of GMM shape analyses in Fig. 3. a, Average endocranial shape differences between H. erectus, recent H. sapiens and Neanderthals. Thin-plate spline grids are exaggerated. b, Visualization of shape changes along PC1 in Fig. 3b in frontal, lateral and superior view; two standard deviations in either direction from the mean shape (grey, negative; black, positive). c, Shape changes along PC2. All recent and fossil modern humans (low scores along PC2) share smaller, orthognathic faces, that differ from the larger, robust and prognathic faces of the Middle Pleistocene humans and Neanderthals (high scores along PC1). Arrow length is colour-coded (short, blue; long, red). As these visualizations are affected by the Procrustes superimposition, we also show grids for the maxilla and the supraorbital area. The arrow points to the plane of the maxillary thin-plate spline (red) in the template configuration.

Extended Data Table 1 List of hominin specimens
Extended Data Table 2 Measurements of the Irhoud 11 mandible after reconstruction
Extended Data Table 3 Dental measurements (upper dentition)
Extended Data Table 4 Dental measurements (lower dentition)
Extended Data Table 5 Morphological dental trait comparison

Related audio

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hublin, JJ., Ben-Ncer, A., Bailey, S. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017). https://doi.org/10.1038/nature22336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22336

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing