Analysis

Reconciling controversies about the ‘global warming hiatus’

Received:
Accepted:
Published online:

Abstract

Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    There IS a problem with global warming... it stopped in 1998. The Telegraph (2006)

  2. 2.

    , , , & Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. Atmos. 111, D12106 (2006)

  3. 3.

    What happened to global warming? Scientists say just wait a bit. Science 326, 28–29 (2009)

  4. 4.

    & Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009)

  5. 5.

    & How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 36, L15708 (2009)

  6. 6.

    et al. Do global temperature trends over the last decade falsify climate predictions? Bull. Am. Meteorol. Soc. 90, 22–23 (2009)

  7. 7.

    The role of natural climatic variation in perturbing the observed global mean temperature trend. Clim. Dyn. 36, 509–521 (2011)

  8. 8.

    & Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011)

  9. 9.

    , , , & Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 1, 360–364 (2011)

  10. 10.

    , , & Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011)

  11. 11.

    , , , & Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012)

  12. 12.

    & Case studies for initialized decadal hindcasts and predictions for the Pacific region. Geophys. Res. Lett. 39, L22705 (2012)

  13. 13.

    , & Overestimated global warming over the past 20 years. Nat. Clim. Chang. 3, 767–769 (2013)

  14. 14.

    et al. Improved surface temperature prediction for the coming decade from a global climate model. Science 317, 796–799 (2007)

  15. 15.

    , , , & Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453, 84–88 (2008)

  16. 16.

    & Global modes of surface temperature variability on interannual to century time scales. J. Geophys. Res. 99, 25819–25833 (1994)

  17. 17.

    , & A comparison of surface air temperature variability in three 1000-yr coupled ocean-atmosphere model integrations. J. Clim. 13, 513–537 (2000)

  18. 18.

    & Is the greenhouse gas-climate signal hiding in the deep ocean? Clim. Change 18, iii–vi (1991)

  19. 19.

    Met office says no warming before 2017: how did the media do? The Global Warming Policy Forum (2013)

  20. 20.

    Media discourse on the climate slowdown. Nat. Clim. Chang. 4, 156–158 (2014)

  21. 21.

    White House climate action plan hotly debated in senate hearing. Eos Trans. 95, 34–35 (2014)

  22. 22.

    , & Pause for thought. Nat. Clim. Chang. 4, 154–156 (2014)

  23. 23.

    , , , & Seepage: Climate change denial and its effect on the scientific community. Glob. Environ. Change 33, 1–13 (2015)

  24. 24.

    , & The ‘pause’ in global warming: turning a routine fluctuation into a problem for science. Bull. Am. Meteorol. Soc. 97, 723–733 (2016)

  25. 25.

    et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Chang. 6, 224–228 (2016)

  26. 26.

    et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds et al.) Ch. 9 (Cambridge Univ. Press, 2013)

  27. 27.

    & An apparent hiatus in global warming? Earths Futur. 1, 19–32 (2013)

  28. 28.

    & Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014)

  29. 29.

    , & Reconciling warming trends. Nat. Geosci. 7, 158–160 (2014)

  30. 30.

    , & On the definition and identifiability of the alleged ‘hiatus’ in global warming. Sci. Rep. 5, 16784 (2015)

  31. 31.

    et al. The global warming hiatus: slowdown or redistribution? Earths Futur. 4, 472–482 (2016)

  32. 32.

    et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006)

  33. 33.

    , , & Seasonal aspects of the recent pause in surface warming. Nat. Clim. Chang. 4, 911–916 (2014)

  34. 34.

    , , & A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2015)

  35. 35.

    & Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014)

  36. 36.

    et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015)

  37. 37.

    , , & Debunking the climate hiatus. Clim. Change 133, 129–140 (2015)

  38. 38.

    , , & Global surface temperature change. Rev. Geophys. 48, RG4004 (2010)

  39. 39.

    , & Change points of global temperature. Environ. Res. Lett. 10, 084002 (2015)

  40. 40.

    & Revisiting whether recent surface temperature trends agree with the CMIP5 ensemble. J. Clim. 29, 8673–8687 (2016)

  41. 41.

    & Lack of evidence for a slowdown in global temperature. US Clivar Var. 13, 6–9 (2015)

  42. 42.

    , & The recent hiatus in global warming of the land surface: scale-dependent breakpoint occurrences in space and time. Geophys. Res. Lett. 42, 6471–6478 (2015)

  43. 43.

    et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Clim. Chang. 4, 835–840 (2014)

  44. 44.

    , & Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett. 38, L12707 (2011)

  45. 45.

    , , , & A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005)

  46. 46.

    , , , & A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997)

  47. 47.

    , & Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013)

  48. 48.

    , , & Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. 107, 4065 (2002)

  49. 49.

    et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 6, 138–144 (2016)

  50. 50.

    & Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014)

  51. 51.

    & The flow of energy through the Earth’s climate system. Q. J. R. Meteorol. Soc. 130, 2677–2701 (2004)

  52. 52.

    et al. Sea level budget over 2003–2008. A reevaluation from GRACE space gravimetry, satellite altimetry and ARGO. Global Planet. Change 65, 83–88 (2009)

  53. 53.

    et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012)

  54. 54.

    et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013)

  55. 55.

    , , & Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Clim. Chang. 4, 1031–1035 (2014)

  56. 56.

    , & Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014)

  57. 57.

    , , & Pacific sea level rise patterns and global surface temperature variability. Geophys. Res. Lett. 43, 8662–8669 (2016)

  58. 58.

    . et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds et al.) Ch. 5 (Cambridge Univ. Press, 2007)

  59. 59.

    , , , & Industrial-era global ocean heat uptake doubles in recent decades. Nat. Clim. Chang. 6, 394–398 (2016)

  60. 60.

    , , & Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang. 5, 555–559 (2015)

  61. 61.

    & Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013)

  62. 62.

    et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014)

  63. 63.

    & The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: a competition of global warming, IPO, and AMO. J. Geophys. Res. Atmos. 119, 11272–11287 (2014)

  64. 64.

    , & On forced temperature changes, internal variability, and the AMO. Geophys. Res. Lett. 41, 3211–3219 (2014)

  65. 65.

    , , & The global warming hiatus — a natural product of interactions of a secular warming trend and a multi-decadal oscillation. Theor. Appl. Climatol. 123, 349–360 (2016)

  66. 66.

    , , & Quantifying the likelihood of a continued hiatus in global warming. Nat. Clim. Chang. 5, 337–342 (2015)

  67. 67.

    , & Prospects for a prolonged slowdown in global warming in the early 21st century. Nat. Commun. 7, 13676 (2016)

  68. 68.

    , & NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502 (2013)

  69. 69.

    , & A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci. 9, 513–517 (2016)

  70. 70.

    , , , & A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015)

  71. 71.

    & Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014)

  72. 72.

    , , & Decadal hindcasts initialized using observed surface wind stress: evaluation and prediction out to 2024. Geophys. Res. Lett. 42, 6454–6461 (2015)

  73. 73.

    , & The recent global warming hiatus: what is the role of Pacific variability? Geophys. Res. Lett. 42, 880–888 (2015)

  74. 74.

    & Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. R. Soc. A 373, 20150146 (2015)

  75. 75.

    & The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008)

  76. 76.

    , & Building confidence in climate model projections: an analysis of inferences from fit. Wiley Interdiscip. Rev. Clim. Chang. (2017)

  77. 77.

    et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7, 185–189 (2014)

  78. 78.

    et al. Observed multivariable signals of late 20th and early 21st century volcanic activity. Geophys. Res. Lett. 42, 500–509 (2015)

  79. 79.

    , & Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett. 41, 5978–5986 (2014)

  80. 80.

    & Global and regional surface cooling in a warming climate: a multi-model analysis. Clim. Dyn. 46, 3899–3920 (2016)

  81. 81.

    & Global and regional variability in marine surface temperatures. Geophys. Res. Lett. 41, 2528–2534 (2014)

  82. 82.

    , & Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Clim. Chang. 4, 898–902 (2014)

  83. 83.

    , , & Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Chang. 6, 1005–1008 (2016)

  84. 84.

    et al. Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophys. Res. Lett. 42, 6526–6534 (2015)

  85. 85.

    , , & Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011)

  86. 86.

    Climatic irregular staircases: generalized acceleration of global warming. Sci. Rep. 6, 19881 (2016)

  87. 87.

    An apparent moratorium on the greenhouse warming due to the deep ocean. Clim. Change 25, 85–88 (1993)

  88. 88.

    & Is the greenhouse gas-climate signal hiding in the deep ocean? Re-addressing the issue. Clim. Change 25, 89–90 (1993)

  89. 89.

    in The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial Volume (ed. ) 9–50 (The Rockefeller Institute Press, Oxford Univ, Press, 1959)

  90. 90.

    , & Does the ocean-atmosphere system have more than one stable mode of operation? Nature 315, 21–26 (1985)

  91. 91.

    Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009)

  92. 92.

    et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010)

  93. 93.

    et al. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett. 36, L07608 (2009)

  94. 94.

    & Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Chang. 6, 986–991 (2016)

  95. 95.

    & The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009)

  96. 96.

    , , & Communication of the role of natural variability in future North American climate. Nat. Clim. Chang. 2, 775–779 (2012)

  97. 97.

    et al. Decadal climate prediction an update from the trenches. Bull. Am. Meteorol. Soc. 95, 243–267 (2014)

  98. 98.

    , & Robust warming projections despite the recent hiatus. Nat. Clim. Chang. 5, 394–396 (2015)

  99. 99.

    et al. Homogeneity adjustments of in situ atmospheric climate data: a review. Int. J. Climatol. 18, 1493–1517 (1998)

  100. 100.

    Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev. Clim. Chang. 1, 123–133 (2010)

  101. 101.

    , , & A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453, 646–649 (2008)

  102. 102.

    , , & Effects of instrumentation changes on sea surface temperature measured in situ. Wiley Interdiscip. Rev. Clim. Chang. 1, 718–728 (2010)

  103. 103.

    , , & Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. Atmos. 117, D8101 (2012)

  104. 104.

    et al. A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. An Overview 1, (2013)

  105. 105.

    , & Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophys. Res. Lett. 42, 2385–2391 (2015)

  106. 106.

    et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015)

  107. 107.

    et al. Further exploring and quantifying uncertainties for extended reconstructed sea surface temperature (ERSST) version 4 (v4). J. Clim. 29, 3119–3142 (2016)

  108. 108.

    et al. Global analysis of night marine air temperature and its uncertainty since 1880: the HadNMAT2 dataset. J. Geophys. Res. Atmos. 118, 1281–1298 (2013)

  109. 109.

    , , , & Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res. 116, D14103 (2011)

  110. 110.

    , , , & Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. Atmos. 116, D14104 (2011)

  111. 111.

    et al. A call for new approaches to quantifying biases in observations of sea-surface temperature. Bull. Am. Meteorol. Soc. (2017). 10.1175/BAMS-D-15-00251.1

  112. 112.

    et al. Carbon Dioxide and Climate: A Scientific Assessment. (National Academy of Sciences, 1979)

  113. 113.

    & Natural variability of the climate system and detection of the greenhouse effect. Nature 344, 324–327 (1990)

  114. 114.

    et al. in Climate Change 2013 (eds et al.) 159–254 (Cambridge Univ. Press, 2013)

  115. 115.

    & Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015)

  116. 116.

    et al. Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res. 116, D22105 (2011)

  117. 117.

    Why the hiatus in global warming in the last decade? Curr. Sci. 105, 1031–1032 (2013)

  118. 118.

    , , & Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise. Sci. Rep. 5, 9957 (2015)

  119. 119.

    & Spatial patterns and frequency of unforced decadal-scale changes in global mean surface temperature in climate models. J. Clim. 29, 6245–6257 (2016)

  120. 120.

    , & Determining the likelihood of pauses and surges in global warming. Geophys. Res. Lett. 42, 5974–5982 (2015)

  121. 121.

    , & The rogue nature of hiatuses in a global warming climate. Geophys. Res. Lett. 43, 8169–8177 (2016)

  122. 122.

    , , & Equilibrium climate sensitivity in light of observations over the warming hiatus. Nat. Clim. Chang. 5, 449–453 (2015)

  123. 123.

    et al. The Pacific Decadal Oscillation, revisited. J. Clim. 29, 4399–4427 (2016)

  124. 124.

    et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015)

  125. 125.

    , , & Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010)

  126. 126.

    in Advances in Geophysics (eds & ) 1–82 (Publisher Academic Press, 1964)

  127. 127.

    , & Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787 (1998)

  128. 128.

    & Observed and simulated multi decadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661–676 (2000)

  129. 129.

    , , & A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett. 31, L12205 (2004)

  130. 130.

    , , , & Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat. Geosci. 2, 492–495 (2009)

  131. 131.

    , , & External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010)

  132. 132.

    , , & Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age. Nat. Commun. 5, 1–8 (2014)

  133. 133.

    , , , & Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012)

  134. 134.

    et al. Have aerosols caused the observed Atlantic Multidecadal Variability? J. Atmos. Sci. 70, 1135–1144 (2013)

  135. 135.

    & Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005)

  136. 136.

    , & The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 28, 2077–2080 (2001)

  137. 137.

    , & Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347, 988–991 (2015)

  138. 138.

    , , & Separating internal variability from the externally forced climate response. J. Clim. 28, 8184–8202 (2015)

  139. 139.

    et al. North Atlantic climate variability: phenomena, impacts and mechanisms. Int. J. Climatol. 21, 1863–1898 (2001)

  140. 140.

    & Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016)

  141. 141.

    & North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation. Ocean Sci. 7, 389–404 (2011)

  142. 142.

    & Multidecadal North Atlantic sea surface temperature and Atlantic Meridional Overturning Circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans 118, 5772–5791 (2013)

  143. 143.

    & Does external forcing interfere with the AMOC’s influence on North Atlantic sea surface temperature? J. Clim. 28, 6309–6323 (2015)

  144. 144.

    & Influence of the thermohaline circulation on projected sea level rise. J. Clim. 13, 1997–2001 (2000)

  145. 145.

    Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise. Proc. R. Soc. A. 464, 1387–1404 (2008)

  146. 146.

    Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A. 466, 303–329 (2010)

  147. 147.

    The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015)

  148. 148.

    et al. Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades. Geophys. Res. Lett. 41, 9040–9049 (2014)

  149. 149.

    , & Impact of aerosol radiative effects on 2000–2010 surface temperatures. Clim. Dyn. 45, 2165–2179 (2015)

  150. 150.

    , , & Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30-member Earth System Model ensembles. J. Geophys. Res. Atmos. 120, 8575–8596 (2015)

  151. 151.

    , , & Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. J. Geophys. Res. Atmos. 120, 8597–8620 (2015)

  152. 152.

    et al. Climate impacts of changing aerosol emissions since 1996. Geophys. Res. Lett. 41, 4711–4718 (2014)

  153. 153.

    , & Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016)

  154. 154.

    Cloud variations and the Earth’s energy budget. Geophys. Res. Lett. 38, L19701 (2011)

  155. 155.

    et al. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys. 17, 2709–2720 (2017)

  156. 156.

    , , , & Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys. Res. Lett. 36, L15808 (2009)

  157. 157.

    et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011)

  158. 158.

    , , , & Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC. J. Geophys. Res. Atmos. 120, 2103–2118 (2015)

  159. 159.

    et al. Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat. Commun. 6, 7692 (2015)

  160. 160.

    et al. The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011)

  161. 161.

    , , , & Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model. Geophys. Res. Lett. 40, 584–588 (2013)

  162. 162.

    , & The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett. 15, 92–96 (2014)

  163. 163.

    et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 41, 7763–7769 (2014)

  164. 164.

    et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010)

  165. 165.

    et al. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model. Clim. Dyn. 48, 2671–2683 (2017)

  166. 166.

    , , , & Stratospheric water vapor feedback. Proc. Natl Acad. Sci. USA 110, 18087–18091 (2013)

  167. 167.

    , & Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer. J. Clim. 29, 595–612 (2016)

  168. 168.

    , , , & Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys. Res. Lett. 39, L01704 (2012)

  169. 169.

    et al. Energy budget constraints on climate response. Nat. Geosci. 6, 415–416 (2013)

  170. 170.

    , , , & The upper end of climate model temperature projections is inconsistent with past warming. Environ. Res. Lett. 8, 014024 (2013)

  171. 171.

    & The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dyn. 45, 1009–1023 (2015)

  172. 172.

    , & The inconstancy of the transient climate response parameter under increasing CO2. Philos. Trans. R. Soc. A 373, 20140417 (2015)

  173. 173.

    Inhomogeneous forcing and transient climate sensitivity. Nat. Clim. Chang. 4, 274–277 (2014)

  174. 174.

    & The impact of forcing efficacy on the equilibrium climate sensitivity. Geophys. Res. Lett. 41, 3565–3568 (2014)

  175. 175.

    Climate sensitivity on the rise. Nat. Clim. Chang. 6, 896–897 (2016)

  176. 176.

    , , & Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Clim. Chang. 6, 931–935 (2016)

  177. 177.

    et al. Earth’s energy imbalance: confirmation and implications. Science 308, 1431–1435 (2005)

  178. 178.

    , , & Implications for climate sensitivity from the response to individual forcings. Nat. Clim. Chang. 6, 386–389 (2016)

  179. 179.

    , , , & Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nat. Geosci. 9, 286–289 (2016)

  180. 180.

    , & Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010)

  181. 181.

    , & Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013)

  182. 182.

    et al. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40, 3175–3179 (2013)

  183. 183.

    , , , & The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41, 1071–1078 (2014)

  184. 184.

    , , & Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J. Geophys. Res. Oceans 120, 6782–6798 (2015)

  185. 185.

    & Spatiotemporal divergence of the warming hiatus over land based on different definitions of mean temperature. Sci. Rep. 6, 31789 (2016)

  186. 186.

    , , , & Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett. 43, 374–382 (2016)

  187. 187.

    , & Eurasian winter cooling in the warming hiatus of 1998-2012. Geophys. Res. Lett. 42, 8131–8139 (2015)

  188. 188.

    , & Trends in hemispheric warm and cold anomalies. Geophys. Res. Lett. 41, 9065–9071 (2014)

  189. 189.

    et al. Contribution of natural decadal variability to global warming acceleration and hiatus. Nat. Clim. Chang. 4, 893–897 (2014)

  190. 190.

    , , , & How robust is the recent strengthening of the tropical Pacific trade winds? Geophys. Res. Lett. 41, 4398–4405 (2014)

  191. 191.

    & Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J. Clim. 28, 20–35 (2015)

  192. 192.

    , , , & Influence of tropical wind on global temperature from months to decades. Clim. Dyn. 47, 2193–2203 (2016)

  193. 193.

    et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014)

  194. 194.

    , & Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012)

  195. 195.

    et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014)

  196. 196.

    , & Observed and simulated fingerprints of multidecadal climate variability and their contributions to periods of global SST stagnation. J. Clim. 30, 721–737 (2017)

  197. 197.

    , , & Tropical Pacific response to 20th century Atlantic warming. Geophys. Res. Lett. 38, L03702 (2011)

  198. 198.

    , , , & Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Chang. 4, 888–892 (2014)

  199. 199.

    , , , & Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett. 43, 7143–7151 (2016)

  200. 200.

    et al. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 46, 2337–2351 (2016)

  201. 201.

    , , & Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Chang. 6, 275–279 (2016)

  202. 202.

    et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Chang. 6, 936–940 (2016)

  203. 203.

    , , , & Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013)

  204. 204.

    & Tracking Earth’s Energy. Science 328, 316–317 (2010)

  205. 205.

    & in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds et al.) Ch. 3 (Cambridge Univ. Press, 2013)

  206. 206.

    et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009)

  207. 207.

    & Variations of the global net air–sea heat flux during the ‘hiatus’ period (2001–10). J. Clim. 29, 3647–3660 (2016)

  208. 208.

    , & Distinct energy budgets for anthropogenic and natural changes during global warming hiatus. Nat. Geosci. 9, 29–33 (2016)

  209. 209.

    , , , & Observed and simulated full-depth ocean heat-content changes for 1970–2005. Ocean Sci. 12, 925–935 (2016)

  210. 210.

    et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011)

  211. 211.

    , , & Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Chang. 3, 649–653 (2013)

  212. 212.

    et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445–449 (2015)

  213. 213.

    et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Chang. 5, 240–245 (2015)

  214. 214.

    , , & Insights into earth’s energy imbalance from multiple sources. J. Clim. 29, 7495–7505 (2016)

  215. 215.

    , , , & The sea level budget since 2003: inference on the deep ocean heat content. Surv. Geophys. 36, 209–229 (2015)

  216. 216.

    , , , & Sea level budget over 2005–2013: missing contributions and data errors. Ocean Sci. 11, 789–802 (2015)

  217. 217.

    et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008)

  218. 218.

    & Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009)

  219. 219.

    & How well can we derive Global Ocean Indicators from Argo data? Ocean Sci. 7, 783–791 (2011)

  220. 220.

    et al. in State of the Climate in 2012 (eds & ) Bull. Am. Meteorol. Soc. 94 (Suppl.), S50–S53 (2013)

  221. 221.

    & Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010)

  222. 222.

    , & Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015)

  223. 223.

    & Tracing the upper ocean’s ‘missing heat’. Geophys. Res. Lett. 38, L14610 (2011)

  224. 224.

    , & Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 7, 10926 (2016)

  225. 225.

    & Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett. 35, L01605 (2008)

  226. 226.

    et al. Full-depth temperature trends in the northeastern Atlantic through the early 21st century. Geophys. Res. Lett. 41, 7971–7979 (2014)

  227. 227.

    , , , & Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Chang. 6, 116–118 (2016)

  228. 228.

    , , , & Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015)

  229. 229.

    , , & Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Chang. 4, 999–1005 (2014)

  230. 230.

    et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds et al.) Ch. 8 (Cambridge Univ. Press, 2013)

  231. 231.

    & Muted precipitation increase in global warming simulations: a surface evaporation perspective. J. Geophys. Res. Atmos. 113, D24118 (2008)

  232. 232.

    et al. A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Q. J. R. Meteorol. Soc. (2016). 10.1002/qj.2949

  233. 233.

    & The annual cycle of the energy budget. Part I: global mean and land-ocean exchanges. J. Clim. 21, 2297–2312 (2008)

  234. 234.

    et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat. Geosci. 5, 110–113 (2012)

  235. 235.

    et al. Changes in global net radiative imbalance 1985-2012. Geophys. Res. Lett. 41, 5588–5597 (2014)

Download references

Acknowledgements

We thank K. Cowtan for providing the HadCRUT3 datasets, M. Huber for providing the modelled forcing responses, and A. Jokimäki for help in collecting the relevant hiatus literature. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Affiliations

  1. Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland

    • Iselin Medhaug
    • , Martin B. Stolpe
    • , Erich M. Fischer
    •  & Reto Knutti

Authors

  1. Search for Iselin Medhaug in:

  2. Search for Martin B. Stolpe in:

  3. Search for Erich M. Fischer in:

  4. Search for Reto Knutti in:

Contributions

I.M. led the writing with contributions from all authors. I.M. produced all figures except Fig. 5, which was produced by M.B.S.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Iselin Medhaug.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.