Slush-like polar structures in single-crystal relaxors


Despite more than 50 years of investigation, it is still unclear how the underlying structure of relaxor ferroelectrics gives rise to their defining properties, such as ultrahigh piezoelectric coefficients, high permittivity over a broad temperature range, diffuse phase transitions, strong frequency dependence in dielectric response, and phonon anomalies1,2,3,4,5,6,7,8,9,10. The model of polar nanoregions inside a non-polar matrix has been widely used to describe the structure of relaxor ferroelectrics11. However, the lack of precise knowledge about the shapes, growth and dipole patterns of polar nanoregions has led to the characterization of relaxors as “hopeless messes”12, and no predictive model for relaxor behaviour is currently available. Here we use molecular dynamics simulations of the prototypical Pb(Mg1/3,Nb2/3)O3–PbTiO3 relaxor material to examine its structure and the spatial and temporal polarization correlations. Our simulations show that the unusual properties of relaxors stem from the presence of a multi-domain state with extremely small domain sizes (2–10 nanometres), and no non-polar matrix, owing to the local dynamics. We find that polar structures in the multi-domain state in relaxors are analogous to those of the slush state of water. The multi-domain structure of relaxors that is revealed by our molecular dynamics simulations is consistent with recent experimental diffuse scattering results and indicates that relaxors have a high density of low-angle domain walls. This insight explains the recently discovered classes of relaxors13 that cannot be described by the polar nanoregion model, and provides guidance for the design and synthesis of new relaxor materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Comparison of PMN–PT to water.
Figure 2: Schematic of our slush-like model for the phase transitions in relaxors and computational diffuse scattering in the phases.
Figure 3: Autocorrelation function for time-delay-averaged angles between displacements of Pb atoms.


  1. 1

    Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Mischenko, A. S., Zhang, Q., Whatmore, R. W., Scott, J. F. & Mathur, N. D. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3–0.1PbTiO3 near room temperature. Appl. Phys. Lett. 89, 242912 (2006)

    ADS  Article  Google Scholar 

  3. 3

    Bokov, A. A. & Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kutnjak, Z., Petzelt, J. & Blinc, R. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Gehring, P. M., Park, S.-E. & Shirane, G. Soft phonon anomalies in the relaxor ferroelectric Pb(Zn1/3Nb2/3)0.92Ti0.08O3 . Phys. Rev. Lett. 84, 5216–5219 (2000)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Dmowski, W. et al. Local lattice dynamics and the origin of the relaxor ferroelectric behavior. Phys. Rev. Lett. 100, 137602 (2008)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Xu, G., Wen, J., Stock, C. & Gehring, P. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Wang, D. et al. Fano resonance and dipolar relaxation in lead-free relaxors. Nat. Commun. 5, 5100 (2014)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Burns, G. & Dacol, F. Glassy polarization behavior in ferroelectric compounds Pb (Mg1/3Nb2/3)O3 and Pb (Zn1/3Nb2/3)O3 . Solid State Commun. 48, 853–856 (1983)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Cohen, R. Materials science: relaxors go critical. Nature 441, 941–942 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Yang, L. et al. Relaxor ferroelectric behavior from strong physical pinning in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymer. Macromolecules 47, 8119–8125 (2014)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Bosak, A., Chernyshov, D., Vakhrushev, S. & Krisch, M. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling. Acta Crystallogr. A 68, 117–123 (2012)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Burkovsky, R. et al. Structural heterogeneity and diffuse scattering in morphotropic lead zirconate-titanate single crystals. Phys. Rev. Lett. 109, 097603 (2012)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Phelan, D. et al. Role of random electric fields in relaxors. Proc. Natl Acad. Sci. USA 111, 1754–1759 (2014)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Takenaka, H., Grinberg, I. & Rappe, A. M. Anisotropic local correlations and dynamics in a relaxor ferroelectric. Phys. Rev. Lett. 110, 147602 (2013)

    ADS  Article  Google Scholar 

  18. 18

    Matsuura, M. et al. Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1 − x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (0 ≤ x ≤ 0.40). Phys. Rev. B 74, 144107 (2006)

    ADS  Article  Google Scholar 

  19. 19

    Tinte, S., Burton, B., Cockayne, E. & Waghmare, U. Origin of the relaxor state in Pb(BxB′1−x) perovskites. Phys. Rev. Lett. 97, 137601 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Grinberg, I., Juhás, P., Davies, P. K. & Rappe, A. M. Relationship between local structure and relaxor behavior in perovskite oxides. Phys. Rev. Lett. 99, 267603 (2007)

    ADS  Article  Google Scholar 

  21. 21

    Zhang, C. & Galli, G. Dipolar correlations in liquid water. J. Chem. Phys. 141, 084504 (2014)

    ADS  Article  Google Scholar 

  22. 22

    Hoffmann, M. M. & Conradi, M. S. Are there hydrogen bonds in supercritical water? J. Am. Chem. Soc. 119, 3811–3817 (1997)

    CAS  Article  Google Scholar 

  23. 23

    Guardia, E., Skarmoutsos, I. & Masia, M. Hydrogen bonding and related properties in liquid water: A Car–Parrinello molecular dynamics simulation study. J. Phys. Chem. B 119, 8926–8938 (2015)

    CAS  Article  Google Scholar 

  24. 24

    Kumar, P., Buldyrev, S. V. & Stanley, H. E. A tetrahedral entropy for water. Proc. Natl Acad. Sci. USA 106, 22130–22134 (2009)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Grinberg, I., Shin, Y.-H. & Rappe, A. M. Molecular dynamics study of dielectric response in a relaxor ferroelectric. Phys. Rev. Lett. 103, 197601 (2009)

    ADS  Article  Google Scholar 

  26. 26

    Rau, J. G. & Gingras, M. J. P. Spin slush in an extended spin ice model. Nat. Commun. 7, 12234 (2016)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Akbas, M. A. & Davies, P. K. Domain growth in Pb(Mg1/3Ta2/3)O3 perovskite relaxor ferroelectric oxides. J. Am. Ceram. Soc. 80, 2933–2936 (1997)

    CAS  Article  Google Scholar 

  28. 28

    Chamberlin, R. V. The big world of nanothermodynamics. Entropy 17, 52–73 (2014)

    ADS  Article  Google Scholar 

  29. 29

    Bokov, A. & Ye, Z.-G. Universal relaxor polarization in Pb(Mg1/3Nb2/3)O3 and related materials. Phys. Rev. B 66, 064103 (2002)

    ADS  Article  Google Scholar 

  30. 30

    Xu, R., Karthik, J., Damodaran, A. R. & Martin, L. W. Stationary domain wall contribution to enhanced ferroelectric susceptibility. Nat. Commun. 5, 3120 (2014)

    ADS  Article  Google Scholar 

  31. 31

    Shin, Y.-H., Cooper, V. R., Grinberg, I. & Rappe, A. M. Development of a bond-valence molecular-dynamics model for complex oxides. Phys. Rev. B 71, 054104 (2005)

    ADS  Article  Google Scholar 

  32. 32

    Liu, S., Grinberg, I., Takenaka, H. & Rappe, A. M. Reinterpretation of the bond-valence model with bond-order formalism: an improved bond-valence-based interatomic potential for PbTiO3 . Phys. Rev. B 88, 104102 (2013)

    ADS  Article  Google Scholar 

  33. 33

    Hiraka, H., Lee, S.-H., Gehring, P., Xu, G. & Shirane, G. Cold neutron study on the diffuse scattering and phonon excitations in the relaxor Pb(Mg1/3Nb2/3)O3 . Phys. Rev. B 70, 184105 (2004)

    ADS  Article  Google Scholar 

  34. 34

    Burns, G. & Dacol, F. Crystalline ferroelectrics with glassy polarization behavior. Phys. Rev. B 28, 2527–2530 (1983)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Kirsch, B., Schmitt, H. & Müser, H. Local polarization in PLZT with diffuse phase transition. Ferroelectrics 68, 275–280 (1986)

    CAS  Article  Google Scholar 

  36. 36

    Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    CAS  Article  Google Scholar 

  37. 37

    Vakhrushev, S., Kvyatkovsky, B., Naberezhnov, A., Okuneva, N. & Toperverg, B. Glassy phenomena in disordered perovskite-like crystals. Ferroelectrics 90, 173–176 (1989)

    CAS  Article  Google Scholar 

  38. 38

    Viehland, D., Jang, S., Cross, L. E. & Wuttig, M. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J. Appl. Phys. 68, 2916–2921 (1990)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Viehland, D., Wuttig, M. & Cross, L. The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120, 71–77 (1991)

    CAS  Article  Google Scholar 

  40. 40

    Viehland, D., Li, J., Jang, S., Cross, L. E. & Wuttig, M. Dipolar-glass model for lead magnesium niobate. Phys. Rev. B 43, 8316–8320 (1991)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Viehland, D., Jang, S., Cross, L. E. & Wuttig, M. Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Phys. Rev. B 46, 8003–8006 (1992)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Westphal, V., Kleemann, W. & Glinchuk, M. Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3 . Phys. Rev. Lett. 68, 847–850 (1992)

    ADS  CAS  Article  Google Scholar 

  43. 43

    Rosenfeld, H. & Egami, T. A model of local atomic structure in the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 . Ferroelectrics 150, 183–197 (1993)

    Article  Google Scholar 

  44. 44

    Pirc, R. & Blinc, R. Spherical random-bond–random-field model of relaxor ferroelectrics. Phys. Rev. B 60, 13470–13478 (1999)

    ADS  CAS  Article  Google Scholar 

  45. 45

    Pirc, R. & Blinc, R. Vogel-Fulcher freezing in relaxor ferroelectrics. Phys. Rev. B 76, 020101 (2007)

    ADS  Article  Google Scholar 

  46. 46

    Blinc, R. et al. Local polarization distribution and Edwards-Anderson order parameter of relaxor ferroelectrics. Phys. Rev. Lett. 83, 424–427 (1999)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Svitelskiy, O., Toulouse, J., Yong, G. & Ye, Z.-G. Polarized Raman study of the phonon dynamics in Pb(Mg1/3Nb2/3)O3 crystal. Phys. Rev. B 68, 104107 (2003)

    ADS  Article  Google Scholar 

  48. 48

    Jeong, I.-K. et al. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94, 147602 (2005)

    ADS  Article  Google Scholar 

  49. 49

    Toulouse, J., Jiang, F., Svitelskiy, O., Chen, W. & Ye, Z.-G. Temperature evolution of the relaxor dynamics in Pb(Zn1/3Nb2/3)O3: a critical Raman analysis. Phys. Rev. B 72, 184106 (2005)

    ADS  Article  Google Scholar 

  50. 50

    Toulouse, J. The three characteristic temperatures of relaxor dynamics and their meaning. Ferroelectrics 369, 203–213 (2008)

    CAS  Article  Google Scholar 

  51. 51

    Meissner, T. & Wentz, F. J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 42, 1836–1849 (2004)

    ADS  Article  Google Scholar 

  52. 52

    Bokov, A. A. et al. Empirical scaling of the dielectric permittivity peak in relaxor ferroelectrics. Phys. Rev. B 68, 052102 (2003)

    ADS  Article  Google Scholar 

  53. 53

    Martin, D. R. & Matyushov, D. V. Dipolar nanodomains in protein hydration shells. J. Phys. Chem. Lett. 6, 407–412 (2015)

    CAS  Article  Google Scholar 

  54. 54

    Elton, D. C. & Fernández-Serra, M.-V. Polar nanoregions in water: a study of the dielectric properties of TIP4P/2005, TIP4P/2005f and TTM3F. J. Chem. Phys. 140, 124504 (2014)

    ADS  CAS  Article  Google Scholar 

  55. 55

    Huang, C. et al. Wide-angle X-ray diffraction and molecular dynamics study of medium-range order in ambient and hot water. Phys. Chem. Chem. Phys. 13, 19997–20007 (2011)

    CAS  Article  Google Scholar 

  56. 56

    Soper, A. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258, 121–137 (2000)

    CAS  Article  Google Scholar 

Download references


This work was supported by the ONR under grant N00014-12-1-1033. Computational support was provided by the US DOD through a Challenge Grant from the HPCMO. We thank P. M. Gehring for discussions on his experimental diffuse scattering data and the diffuse scattering method.

Author information




H.T., I.G. and A.M.R. designed the simulation approach and analysed the results. The atomistic potential parameters were obtained for small cells by H.T. and S.L., and for larger cells by H.T. H.T. performed the molecular dynamics simulations, and diffuse scattering and correlation function calculations. H.T., I.G. and S.L. made the figures. All authors wrote the paper.

Corresponding authors

Correspondence to Hiroyuki Takenaka or Andrew M. Rappe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks P. Gehring, G. Guzmán-Verri and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Schematic of the PNR model.

In the paraelectric phase, dipoles are randomly oriented (upper panel). At Tb, PNRs appear (middle panel). Dipoles align and are still randomly oriented inside and outside of the PNR. The PNRs grow and interact with each other on cooling. At T*, roughly halfway between Tb and Tf, static local distortions were detected using several experimental techniques. As T is lowered further, PNRs coalesce and touch each other and the system undergoes a transition into the frozen phase at Tf (lower panel), in which the PNRs cannot reorient.

Extended Data Figure 2 Dependence of DS patterns on the size of MD supercells.

We compare our computational DS at 300 K using MD trajectories with 100-ps simulation times to the experimental DS for PMN and PMN–10PT at 300 K (ref. 18). ae, DS around the (100) Bragg spot for 36 × 36 × 36 (a), 64 × 64 × 64 (b) and 72 × 72 × 72 (c) supercells, the experimental PMN (d) and the experimental PMN–10PT (e). fj, As ae, but around the (110) Bragg spot. Experimentally reported butterfly and rod shapes can be seen with increasing clarity for larger MD supercells. Orange arrows in ce highlight the changes with PT content. Panels d, e, i and j adapted from ref. 18, American Physical Society.

Extended Data Figure 3 Colour contour plots of the DS.

ag, Around (100) at 100 K, 200 K, 300 K, 400 K, 500 K, 600 K and 700 K, respectively. hn, As ag, but around (110).

Extended Data Figure 4 Analysis of the DS intensity of the (110) Bragg spot using scans through q values along the (110) direction, showing the comparison between experimental and theoretical results.

a, DS intensity for PMN, PMN–10PT, PMN–20PT (experimental) and PMN–25PT (from MD simulations) at 300 K. b, Temperature dependence of I0 extracted by fitting a Lorentzian to the DS intensity. c, d, Temperature dependence of the DS intensity for PMN–25PT (theoretical; c) and PMN (experimental; d)33. Image in d reproduced with permission from ref. 33, copyright (2004) by the American Physical Society.

Extended Data Figure 5 DS intensities obtained using time-averaged Pb-atom displacements.

ae, We multiply the lengths of the displacements by 0.9, 0.8, 0.7, 0.3 and 0.2, respectively. f, DS intensities obtained using unscaled, time-averaged Pb-atom displacements.

Extended Data Figure 6 DS intensities using model structures.

a, Paraelectric random displacements. b, Ferroelectric collinear displacements. c, Ferroelectric displacements with 90° domain walls. DS intensities are essentially zero for all three models (ac). d, A structure with a 20° angle between dipoles in nearest-neighbour cells obtained by Monte Carlo calculation. In all cases (ad), DS does not assume the butterfly shape.

Extended Data Figure 7 Domain-size dependence of DS intensities for 71° domain-wall model structures.

ac, Domain sizes are 4 nm, 5.6 nm and 8 nm, respectively. As domain size increases, the model butterfly DS pattern shrinks, implying that growth of the correlated domain with lower temperature would lead to a weaker, less extensive DS pattern, in disagreement with experimental observations of greater DS extent at lower temperatures. However, this observation supports our model of fixed-size domains separated by domain walls.

Extended Data Figure 8 Time-delay-averaged angle correlation functions for Pb atomic pairs between nth neighbour cells.

am, Correlations at 600 K (ac), 500 K (df), 400 K (gi), 300 K (jl) and 100 K (mo). Left, middle and right panels correspond to the 〈100〉, 〈110〉 and 〈111〉 directions, respectively.

Extended Data Figure 9 Five subgroups of perovskite cells present in PMN–PT.

a, The five subgroups are illustrated for a 6 × 6 × 6 supercell. b, The number of each subgroup in a 72 × 72 × 72 supercell in our MD simulations. c, Overlap of time-delay-averaged angle autocorrelation distributions for Pb-atom displacements in different local environments as a function of temperature. Changes in the temperature dependence of the overlap correspond to the relaxor transition temperatures Tb = 550 K, T* = 480 K and Tf = 380 K.

Extended Data Figure 10 Dielectric constant for water.

a, Real part of the dielectric constant for different frequencies f in the gigahertz range. The frequency dispersion and the diffuseness of the temperature dependence of the dielectric constant are similar to the relaxor dielectric response. b, Arrhenius plot of the frequency f as a function of value of the inverse temperature 1/T at which the real part of the dielectric constant is maximum, for the frequencies shown in a. A clear non-Arrhenius dependence of frequency on temperature is observed for f ≤ 0.333 GHz, whereas the plot for the higher f follows the Arrhenius law.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takenaka, H., Grinberg, I., Liu, S. et al. Slush-like polar structures in single-crystal relaxors. Nature 546, 391–395 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.