Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural basis for selectivity and diversity in angiotensin II receptors

Abstract

The angiotensin II receptors AT1R and AT2R serve as key components of the renin–angiotensin–aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or β-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure–activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Active-like conformation of AT2R.
Figure 2: Helix VIII blocks the putative G protein/β-arrestin-binding site of AT2R.
Figure 3: Ligand selectivity between AT1R and AT2R.
Figure 4: Docking and SAR analysis of quinazolinone-biphenyltetrazole derivatives in AT2R and AT1R.

Accession codes

Primary accessions

Protein Data Bank

References

  1. Karnik, S. S. et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin receptors: interpreters of pathophysiological angiotensinergic stimuli. Pharmacol. Rev . 67, 754–819 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. de Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W. & Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev . 52, 415–472 (2000)

    CAS  PubMed  Google Scholar 

  3. Zaman, M. A., Oparil, S. & Calhoun, D. A. Drugs targeting the renin-angiotensin-aldosterone system. Nat. Rev. Drug Discov . 1, 621–636 (2002)

    CAS  PubMed  Article  Google Scholar 

  4. Porrello, E. R., Delbridge, L. M. & Thomas, W. G. The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front. Biosci . 14, 958–972 (2009)

    CAS  Article  Google Scholar 

  5. Guimond, M. O. & Gallo-Payet, N. How does angiotensin AT2 receptor activation help neuronal differentiation and improve neuronal pathological situations? Front. Endocrinol . 3, 164 (2012)

    CAS  Article  Google Scholar 

  6. Berk, B. C. Angiotensin type 2 receptor (AT2R): a challenging twin. Sci. STKE 2003, pe16 (2003)

    PubMed  Google Scholar 

  7. Miura, S., Matsuo, Y., Kiya, Y., Karnik, S. S. & Saku, K. Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem. Biophys. Res. Commun . 391, 85–90 (2010)

    CAS  PubMed  Article  Google Scholar 

  8. Hein, L., Barsh, G. S., Pratt, R. E., Dzau, V. J. & Kobilka, B. K. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377, 744–747 (1995)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. Ichiki, T. et al. Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377, 748–750 (1995)

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Porrello, E. R. et al. Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension 53, 1032–1040 (2009)

    CAS  PubMed  Article  Google Scholar 

  11. Ruiz-Ortega, M. et al. Angiotensin II activates nuclear transcription factor kappaB through AT1 and AT2 in vascular smooth muscle cells: molecular mechanisms. Circ. Res . 86, 1266–1272 (2000)

    CAS  PubMed  Article  Google Scholar 

  12. Ruiz-Ortega, M., Lorenzo, O., Rupérez, M., Blanco, J. & Egido, J. Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT1 and AT2 receptors. Am. J. Pathol . 158, 1743–1756 (2001)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Caballero, R. et al. Interaction of angiotensin II with the angiotensin type 2 receptor inhibits the cardiac transient outward potassium current. Cardiovasc. Res . 62, 86–95 (2004)

    CAS  PubMed  Article  Google Scholar 

  14. Zhao, Y. et al. Angiotensin II induces peroxisome proliferator-activated receptor gamma in PC12W cells via angiotensin type 2 receptor activation. J. Neurochem . 94, 1395–1401 (2005)

    CAS  PubMed  Article  Google Scholar 

  15. Guimond, M. O. & Gallo-Payet, N. The angiotensin II type 2 receptor in brain functions: an update. Int. J. Hypertens . 2012, 351758 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  16. Anand, U. et al. Angiotensin II type 2 receptor (AT2R) localization and antagonist-mediated inhibition of capsaicin responses and neurite outgrowth in human and rat sensory neurons. Eur. J. Pain 17, 1012–1026 (2013)

    CAS  PubMed  Article  Google Scholar 

  17. Smith, M. T., Woodruff, T. M., Wyse, B. D., Muralidharan, A. & Walther, T. A small molecule angiotensin II type 2 receptor (AT2R) antagonist produces analgesia in a rat model of neuropathic pain by inhibition of p38 mitogen-activated protein kinase (MAPK) and p44/p42 MAPK activation in the dorsal root ganglia. Pain Med . 14, 1557–1568 (2013)

    PubMed  Article  Google Scholar 

  18. Smith, M. T., Wyse, B. D. & Edwards, S. R. Small molecule angiotensin II type 2 receptor (AT2R) antagonists as novel analgesics for neuropathic pain: comparative pharmacokinetics, radioligand binding, and efficacy in rats. Pain Med . 14, 692–705 (2013)

    PubMed  Article  Google Scholar 

  19. Smith, M. T., Lau, T., Wallace, V. C., Wyse, B. D. & Rice, A. S. Analgesic efficacy of small-molecule angiotensin II type 2 receptor antagonists in a rat model of antiretroviral toxic polyneuropathy. Behav. Pharmacol . 25, 137–146 (2014)

    CAS  PubMed  Article  Google Scholar 

  20. Rice, A. S. et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: a randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 383, 1637–1647 (2014)

    CAS  PubMed  Article  Google Scholar 

  21. Wan, Y. et al. Design, synthesis, and biological evaluation of the first selective nonpeptide AT2 receptor agonist. J. Med. Chem. 47, 5995–6008 (2004)

    CAS  PubMed  Article  Google Scholar 

  22. Kemp, B. A. et al. AT2 receptor activation induces natriuresis and lowers blood pressure. Circ. Res . 115, 388–399 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Larhed, M., Hallberg, M. & Hallberg, A. Nonpeptide AT2 receptor agonists. Med. Chem. Rev. 51, 69–82 (2016)

    Google Scholar 

  24. Zhang, H. et al. Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161, 833–844 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Zhang, H. et al. Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J. Biol. Chem. 290, 29127–29139 (2015)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Glinka, T. W. et al. L-161,638: a potent AT2 selective quinazolinone angiotensin II binding inhibitor. Bioorg. Med. Chem. Lett . 4, 1479–1484 (1994)

    CAS  Article  Google Scholar 

  27. de Laszlo, S., Glinka, T., Greenlee, W., Chakravarty, P. & Patchett, A. Disubstituted 6-aminoquinazolinones. US patent 5,385,894 (1995)

  28. Dosa, P. I. & Amin, E. A. Tactical approaches to interconverting GPCR agonists and antagonists. J. Med. Chem. 59, 810–840 (2016)

    CAS  PubMed  Article  Google Scholar 

  29. Murugaiah, A. M. et al. From the first selective non-peptide AT2 receptor agonist to structurally related antagonists. J. Med. Chem. 55, 2265–2278 (2012)

    CAS  PubMed  Article  Google Scholar 

  30. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat. Protocols 4, 706–731 (2009)

    CAS  PubMed  Article  Google Scholar 

  32. Liu, W. et al. Serial femtosecond crystallography of G protein-coupled receptors. Science 342, 1521–1524 (2013)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Liu, W., Ishchenko, A. & Cherezov, V. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protocols 9, 2123–2134 (2014)

    CAS  PubMed  Article  Google Scholar 

  34. Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun . 5, 3309 (2014)

    ADS  PubMed  Article  CAS  Google Scholar 

  35. Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon Stuart, C. ) 366–428 (Academic Press, 1995)

    CAS  Article  Google Scholar 

  36. Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol . 53, 531–556 (2013)

    CAS  PubMed  Article  Google Scholar 

  37. Venkatakrishnan, A. J. et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536, 484–487 (2016)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Katritch, V. et al. Analysis of full and partial agonists binding to β2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J. Mol. Recognit. 22, 307–318 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Katritch, V. et al. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci . 39, 233–244 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Balakumar, P. & Jagadeesh, G. Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J. Mol. Endocrinol. 53, R71–R92 (2014)

    CAS  PubMed  Article  Google Scholar 

  44. Unal, H. & Karnik, S. S. Constitutive activity in the angiotensin II type 1 receptor: discovery and applications. Adv. Pharmacol . 70, 155–174 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Miura, S. & Karnik, S. S. Angiotensin II type 1 and type 2 receptors bind angiotensin II through different types of epitope recognition. J. Hypertens . 17, 397–404 (1999)

    CAS  PubMed  Article  Google Scholar 

  46. Miura, S. & Karnik, S. S. Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO J . 19, 4026–4035 (2000)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Akazawa, H., Yano, M., Yabumoto, C., Kudo-Sakamoto, Y. & Komuro, I. Angiotensin II type 1 and type 2 receptor-induced cell signaling. Curr. Pharm. Des . 19, 2988–2995 (2013)

    CAS  PubMed  Article  Google Scholar 

  48. Hein, L., Meinel, L., Pratt, R. E., Dzau, V. J. & Kobilka, B. K. Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol. Endocrinol . 11, 1266–1277 (1997)

    CAS  PubMed  Article  Google Scholar 

  49. Widdop, R. E., Matrougui, K., Levy, B. I. & Henrion, D. AT2 receptor-mediated relaxation is preserved after long-term AT1 receptor blockade. Hypertension 40, 516–520 (2002)

    CAS  PubMed  Article  Google Scholar 

  50. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Bhat, T. N. Calculation of an Omit Map. J. Appl. Crystallogr. 21, 279–281 (1988)

    Article  Google Scholar 

  55. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    CAS  PubMed  Article  Google Scholar 

  56. Halgren, T. A. Potential energy functions. Curr. Opin. Struct. Biol . 5, 205–210 (1995)

    CAS  PubMed  Article  Google Scholar 

  57. Totrov, M. & Abagyan, R. Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 29 (suppl. 1), 215–220 (1997)

    Article  Google Scholar 

  58. Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput . 12, 405–413 (2016)

    CAS  PubMed  Article  Google Scholar 

  59. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    CAS  Article  PubMed  Google Scholar 

  60. Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput . 8, 3257–3273 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    ADS  Article  Google Scholar 

  62. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    ADS  CAS  Article  Google Scholar 

  63. Hess, B. P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput . 4, 116–122 (2008)

    CAS  PubMed  Article  Google Scholar 

  64. de Laszlo, S. E. et al. The SAR of 6-(N-alkyl-N-acyl)-2-propyl-3-[(2′-tetrazol-5-yl)biphen-4-yl)methyl]-quinazolinones as balanced affinity antagonists of the human AT1 and AT2 receptors. Bioorg. Med. Chem. Lett . 5, 1359–1364 (1995)

    CAS  Article  Google Scholar 

  65. de Laszlo, S. E. et al. The design, binding affinity prediction and synthesis of macrocyclic angiotensin II AT1 and AT2 receptor antagonists. Bioorg. Med. Chem. Lett . 6, 923–928 (1996)

    CAS  Article  Google Scholar 

  66. Beauchamp, H. T., Chang, R. S., Siegl, P. K. & Gibson, R. E. In vivo receptor occupancy of the angiotensin II receptor by nonpeptide antagonists: relationship to in vitro affinities and in vivo pharmacologic potency. J. Pharmacol. Exp. Ther. 272, 612–618 (1995)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) grants R01 GM108635 (V.C.) and U54 GM094618 (V.K., V.C. and R.C.S.); the National Science Foundation (NSF) grant 1231306 (U.W. and W.L.); the Helmholtz Association through program oriented funds (T.A.W. and A.T.). A.T. acknowledges financial support from ‘X-probe’ funded by the European Union’s 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement 637295. Parts of this research were carried out at the Coherent X-ray Imaging (CXI) end station of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, operated by Stanford University on behalf of the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515, and at the GM/CA CAT and IMCA-CAT of the Advanced Photon Source, Argonne National Laboratory. Parts of the sample delivery system used at LCLS for this research was funded by the NIH grant P41GM103393. Computational part of the study was supported by the University of Southern California Center for High-Performance Computing and Communications (https://hpcc.usc.edu/). We thank J. Velasquez for help with molecular biology, M. Chu for help with baculovirus expression, M. Hanson for help with crystallographic data processing and A. Walker for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

K.H., S.M.S., R.C.S., V.K. and V.C. conceived and managed the project. H.Z. designed, optimized, purified, and characterized receptor constructs for structural studies, crystallized the receptor in LCP. H.Z. and A.I. collected and processed synchrotron data. H.Z., A.B., A.I., M.S.H., U.W., W.L. and V.C. collected XFEL data. A.B., A.T. and T.A.W. processed XFEL data. G.W.H., H.Z. and A.B. solved and refined the structures. M.T.R., K.H., K.B., E.L.M., S.M.S. and S.S. interpreted the structure and designed experiments. R.D.K. and J.M.S. prepared VLPs for binding studies. P.S., M.G.-C. and B.Z. designed the binding experiments. B.Z. carried out radioligand-binding assays with VLPs. H.Z., B.Z., M.G.-C., A.S., N.P. and P.S. analysed the data and compiled the figures for the manuscript. N.P., A.S. and V.K. performed docking and molecular dynamics simulations. K.L.W. performed radioligand-binding experiments with receptor mutants. M.T.R., K.H. and K.B. selected compounds for SAR study and interpreted the data. H.Z., V.K. and V.C. wrote the manuscript with contributions from M.T.R. and K.H.

Corresponding authors

Correspondence to Vsevolod Katritch or Vadim Cherezov.

Ethics declarations

Competing interests

B.Z., M.T.R., K.H., K.B., E.L.M., S.M.S., R.D.K., J.M.S., S.S., M.G.-C. and P.S. are employees of Merck & Co., Inc., Kenilworth, New Jersey, USA, receive salary and research support from the company and may own stock and/or stock options in the company. Other authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. M. Carey, A. Hallberg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 AT2R ‘snake’ diagram and protein engineering.

Truncations are shown in grey, disulfide bonds in yellow, ligand-binding residues in red, and conserved motifs in green.

Extended Data Figure 2 Radioligand-binding assays.

a, b, Saturation binding of compound 1 and Sar1-Ile8-angiotensin II. Specific binding of [3H]compound 1 (a) and [125I]Sar1-Ile8-angiotensin II (b) to the wild-type (open circle) and engineered (closed triangle) AT2R, representative of two separate experiments. ce, Competition binding of compound 1 (open circle), compound 2 (closed triangle) and angiotensin II (open square) to the wild-type AT2R (c), engineered AT2R (d) and wild-type AT1R (e) with [125I]Sar1-Ile8-angiotensin II as a tracer; each point represents the mean ± s.d. of two separate experiments, performed in duplicate.

Extended Data Figure 3 Crystallization of AT2R and crystal packing.

a, AT2R–compound 1 crystals grown in a syringe for XFEL data collection. b, AT2R–compound 2 crystals grown in a glass sandwich plate for synchrotron data collection. c, Crystal packing in the monoclinic space group (AT2R–compound 1 and AT2R–compound 2 structures), side and top views (AT2R in green and cyan; BRIL in orange and pink). d, Crystal packing in the orthorhombic space group (AT2R–compound 1 structure), side and top views (AT2R in cyan; BRIL in blue). e, Different BRIL orientations in the two BRIL–AT2R molecules in the asymmetric unit of monoclinic AT2R–compound 1 structure and AT2R–compound 2 structure (pink and orange), and in the orthorhombic AT2R–compound 1 structure (blue) with AT2R in cyan, side and top views. Unit cell in c and d is outlined by the black line.

Extended Data Figure 4 Conserved L[M]3.46-I[A]6.37-Y[Y]7.53 microswitch and sodium-binding pocket in AT1R and AT2R.

a, Comparison of the conserved residue triad between the AT1R (green, PDB code 4YAY) and AT2R (cyan) structures shows a rearrangement of interactions consistent with AT2R activation. b, Modelling of the AT2R in a hypothetical inactive state (cyan) based on the AT1R crystal structure template (green) shows that replacement of a large hydrophobic residue in position 6.37, which is conserved in most class A GPCRs, to a rare small Ala2586.37 in AT2R markedly reduces the hydrophobic contact in this region between helices III and VI in the inactive state. c, d, Sodium-binding pocket in AT2R (c) and AT1R (PDB code 4YAY) (d) is shown as a surface with hydrogen bonds between Asn7.46 and Asn3.35 as orange spheres. Putative sodium ion in the AT1R structure (d) is shown as a solid magenta sphere, while the same position in the AT2R structure (c) is marked as a dotted sphere. Potential sodium-coordinating residues are shown as sticks.

Extended Data Figure 5 Summary of molecular dynamics simulations.

ac, Conformational stability of the AT2R structure is illustrated by representative conformations (c) from a total of 4 μs of molecular dynamics simulations (8 independent 500 ns runs), clustered by r.m.s.d. Traces of distances measured between different helices are shown for apo AT2R (a) and for the AT2R–compound 1 complex (b). Distances were calculated between the centres of mass of residues Ser792.39-Ile832.43 for helix II, Arg1423.50-Val1463.54 for helix III, Gln2536.32-Met2576.36 for helix VI, and Phe325-Lys328 for helix VIII. d, e, Conformational stability of helix VIII upon perturbations, using eight starting conformations of helix VIII (d) is revealed by r.m.s.d. traces (e), which all converge by ~250 ns of simulations. r.m.s.d. values are calculated for the centre of mass of Cα atoms of residues Phe325-Lys328 compared to the crystal structure of AT2R. Tick marks on the y axis show the starting frame r.m.s.d. values. Coloured lines are plotted using values averaged over a 500 ps window. fh, Results of molecular dynamics simulations for a modified AT2R model with the backbone of helix VIII aligned with helix VIII from AT1R structure (PDB code 4YAY). Conformational snapshots of the AT2R model (f) are shown for every 100 ns (blue to red spectrum) from one of the six independent 700 ns molecular dynamics simulation runs (simulation 5). Green cartoon shows inactive-state conformation of CCR5 (PDB code 4MBS), helix VIII of which was found to be the closest to the final conformations of AT2R helix VIII in molecular dynamics simulations. Intracellular view (g) of snapshots from the same molecular dynamics simulation is shown, but at t = 0 and t = 700 ns. Traces of the distance between helices VI and II (h, top curves), calculated between the centres of mass of Cα atoms of residues Gln2536.32-Met2576.36 in helix VI and residues Ser792.39-Ile832.43 in helix II, show a change from 21 Å (active state) to under 16 Å (inactive state). Traces of the distance between helix VIII and the membrane (h, bottom curves), calculated between the centre of mass of Cα atoms of residues Arg330-Val332 and the closest phosphate atoms of lipid molecules, indicate a gradual shift of helix VIII towards the lipid bilayer, with the distance decreasing from ~10 Å to under 3 Å.

Extended Data Figure 6 Electron density for compounds 1 and 2.

a, b, Compound 1 can be modelled in two possible conformations (a and b), with alternative orientations of the benzene and thiophene rings. c, d, Compound 2 can be modelled in two possible conformations (c and d), with alternative orientations of the benzene and furan rings. 2mFo − DFc electron density (blue mesh) for compound 1 contoured at 1σ, and mFo − DFc density (green mesh: positive; red mesh: negative) contoured at 3σ. The conformations shown in a and c were used in the final crystal structures because of a slightly better ligand fit and the absence of strong difference mFo − DFc density. Both conformations for each ligand, however, are possible and indistinguishable by docking studies.

Extended Data Figure 7 Ligand binding and cross-docking in AT2R and AT1R structures.

a, b, Docking poses of compound 1 (magenta), compound 2 (yellow), olmesartan (blue) and ZD7155 (orange) in the crystal structures of AT2R (a) and AT1R (b). Receptors are shown in carton representation, ligands are shown as sticks, and hydrogen bonds/salt bridges are shown as dashed lines. c, Ligand binding affinities and docking scores for AT2R and AT1R ligands. Data for the cognate ligands are shown in bold. Inactive state AT1R and active-like state of AT2R correspond to crystal structures. Active-like state of AT1R and inactive state of AT2R were modelled based on the crystal structures of AT2R and AT1R, respectively.

Extended Data Figure 8 Mutagenesis of the AT2R ligand-binding pocket.

a, Ligand-binding pocket from the AT2R–compound 1 crystal structure. b, Ligand-binding pocket from the AT1R–olmesartan crystal structure. c, Schematics of interactions between compound 1 and AT2R residues. d, Schematics of interactions between olmesartan and AT1R residues. In all panels, residues are coloured according to their effect on affinity: more than 100-fold decrease in affinity (orange); 5–100-fold decrease in affinity (yellow); and less than 5-fold decrease in affinity (grey). e, Effects of single residue mutations in the AT2R ligand-binding pocket on the ligand binding affinities. Values represent mean ± s.d. with the number of experiments shown in parenthesis.

Extended Data Table 1 Data collection and refinement statistics (molecular replacement)
Extended Data Table 2 SAR for quinazolinone-biphenyltetrazole derivatives in AT2R and AT1R

Related audio

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion. (PDF 253 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Han, G., Batyuk, A. et al. Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544, 327–332 (2017). https://doi.org/10.1038/nature22035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22035

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing