Letter | Published:

Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation

Nature volume 544, pages 460464 (27 April 2017) | Download Citation

This article has been updated

Abstract

Next-generation high-performance structural materials are required for lightweight design strategies and advanced energy applications. Maraging steels, combining a martensite matrix with nanoprecipitates, are a class of high-strength materials with the potential for matching these demands1,2,3. Their outstanding strength originates from semi-coherent precipitates4,5, which unavoidably exhibit a heterogeneous distribution that creates large coherency strains, which in turn may promote crack initiation under load6,7,8. Here we report a counterintuitive strategy for the design of ultrastrong steel alloys by high-density nanoprecipitation with minimal lattice misfit. We found that these highly dispersed, fully coherent precipitates (that is, the crystal lattice of the precipitates is almost the same as that of the surrounding matrix), showing very low lattice misfit with the matrix and high anti-phase boundary energy, strengthen alloys without sacrificing ductility. Such low lattice misfit (0.03 ± 0.04 per cent) decreases the nucleation barrier for precipitation, thus enabling and stabilizing nanoprecipitates with an extremely high number density (more than 1024 per cubic metre) and small size (about 2.7 ± 0.2 nanometres). The minimized elastic misfit strain around the particles does not contribute much to the dislocation interaction, which is typically needed for strength increase. Instead, our strengthening mechanism exploits the chemical ordering effect that creates backstresses (the forces opposing deformation) when precipitates are cut by dislocations. We create a class of steels, strengthened by Ni(Al,Fe) precipitates, with a strength of up to 2.2 gigapascals and good ductility (about 8.2 per cent). The chemical composition of the precipitates enables a substantial reduction in cost compared to conventional maraging steels owing to the replacement of the essential but high-cost alloying elements cobalt and titanium with inexpensive and lightweight aluminium. Strengthening of this class of steel alloy is based on minimal lattice misfit to achieve maximal precipitate dispersion and high cutting stress (the stress required for dislocations to cut through coherent precipitates and thus produce plastic deformation), and we envisage that this lattice misfit design concept may be applied to many other metallic alloys.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 27 April 2017

    The y-axis units were corrected in Fig. 1a; an additional statement was included in the Acknowledgements.

References

  1. 1.

    & in Maraging Steels: Recent Developments and Applications (ed. ) 1–38 (TMS-AIME, 1988)

  2. 2.

    The physical metallurgy of maraging steels. Metall. Rev. 13, 115–128 (1968)

  3. 3.

    , , & Nanoprecipitate-hardened 1.5GPa steels with unexpected high ductility. Scr. Mater. 60, 1141–1144 (2009)

  4. 4.

    et al. Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 48, 1187–1200 (2000)

  5. 5.

    & Maraging Steels: Modelling of Microstructure, Properties and Applications 1st edn, 63 (Woodhead, 2009)

  6. 6.

    Work hardening of dispersion-hardened crystals. Phil. Mag. 14, 1157–1178 (1966)

  7. 7.

    , , & Effect of retained austenite and high temperature Laves phase on the work hardening of an experimental maraging steel. Mater. Sci. Eng. A 564, 485–492 (2013)

  8. 8.

    , & Precipitation hardening in 350 grade maraging steel. Metall. Trans. A 24, 2429–2442 (1993)

  9. 9.

    The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011)

  10. 10.

    , & Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)

  11. 11.

    et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227–230 (2016)

  12. 12.

    et al. Advances in the calibration of atom probe tomographic reconstruction. J. Appl. Phys. 105, 034913 (2009)

  13. 13.

    et al. Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815–824 (2009)

  14. 14.

    et al. Atom probe tomography investigation of Mg site occupancy within δ′ precipitates in an Al–Mg–Li alloy. Scr. Mater. 66, 903–906 (2012)

  15. 15.

    et al. Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel. Acta Mater. 73, 56–74 (2014)

  16. 16.

    et al. Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles. Acta Mater. 97, 58–67 (2015)

  17. 17.

    , & Microstructural evolution in a PH13–8 stainless steel after ageing. Acta Mater. 51, 101–116 (2003)

  18. 18.

    et al. Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Mater. Sci. Eng. A 394, 285–295 (2005)

  19. 19.

    , , & Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 2317–2319 (1999)

  20. 20.

    , , & Studies of dislocations by field ion microscopy and atom probe tomography. Phil. Mag. 93, 3726–3740 (2013)

  21. 21.

    et al. Linear complexions: confined chemical and structural states at dislocations. Science 349, 1080–1083 (2015)

  22. 22.

    et al. Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6, 437–444 (2000)

  23. 23.

    & X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

  24. 24.

    & The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis. Appl. Phys. Lett. 69, 3173–3175 (1996)

  25. 25.

    et al. Neutron-diffraction study and modeling of the lattice parameters of a NiAl-precipitate-strengthened Fe-based alloy. Acta Mater. 60, 5362–5369 (2012)

  26. 26.

    & Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent fcc and bcc structures. Metall. Mater. Trans. A 40, 499–510 (2009)

  27. 27.

    Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater . 1, 16019 (2016)

  28. 28.

    , & Phase chemistry and precipitation reactions in maraging steels. Part III. Model alloys. Metall. Trans. A 24, 1241–1249 (1993)

  29. 29.

    , , & Microstructure and mechanical properties of a cobalt-free tungsten-bearing maraging steel. Mater. Sci. Eng. 79, 133–140 (1986)

  30. 30.

    & Phase Transformations in Steels: Diffusionless Transformations, High strength steels, Modelling and Advanced Analytical Techniques 1st edn, 335 (Woodhead, 2012)

  31. 31.

    et al. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007)

  32. 32.

    et al. Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448–457 (2011)

  33. 33.

    The post-ionization of field evaporated ions: a theoretical explanation of multiple charge states. Surf. Sci. 116, 273–301 (1982)

  34. 34.

    & An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. 57, 160–177 (1945)

  35. 35.

    et al. Diffusion of molybdenum in α-iron. Acta Mater. 50, 4117–4125 (2002)

  36. 36.

    , & Self-diffusion in ferromagnetic α-iron. Scr. Metall. 11, 795–802 (1977)

  37. 37.

    & Impurity and chemical diffusion of Al in bcc and fcc iron. Defect Diffus. Forum. 95, 709–714 (1993)

  38. 38.

    & Smithells Metals Reference Book 8th edn, 13–60 (Butterworth-Heinemann, 2003)

  39. 39.

    Progress report on recent advances in physical metallurgy: (C) The quantitative relationship between microstructure and properties in two-phase alloys. Int. Metall. Rev. 18, 31–36 (1973)

  40. 40.

    A review of the mechanical properties of B2 compounds. Mater. Sci. Eng. A 192–193, 1–13 (1995)

  41. 41.

    Precipitation hardening in metals. Mater. Sci. Technol. 15, 30–36 (1999)

  42. 42.

    , & Physical and mechanical properties of the B2 compound NiAl. Int. Mater. Rev. 38, 193–232 (1993)

  43. 43.

    et al. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater. 84, 283–291 (2015)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant numbers 51531001, 51422101, 51671018, 51271212 and 51371003), the 111 Project (grant number B07003), the International S&T Cooperation Program of China (grant number 2015DFG52600), the Program for Changjiang Scholars and Innovative Research Team in University (grant number IRT_14R05) and the Projects of SKL-AMM-USTB (grant numbers 2016Z-04, 2016-09, 2016Z-16). Y.W. acknowledges the Top-Notch Young Talents Program and the Fundamental Research Funds for the Central Universities. We thank X. Xu at Tongling University, Z. Fan at the China Academy of Engineering Physics, Y. Qiao, L. You and G. Liu at the University of Science and Technology Beijing, and Y. Tian at Tohoku University for help with sample preparation and discussions. M.Y. and B.G. are grateful to U. Tezins and A. Sturm for their support of the focused ion beam and APT facilities at the Max-Planck-Institut für Eisenforschung. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract number DE-AC02-06CH11357.

Author information

Affiliations

  1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

    • Suihe Jiang
    • , Hui Wang
    • , Yuan Wu
    • , Xiongjun Liu
    • , Honghong Chen
    • , Yandong Wang
    •  & Zhaoping Lu
  2. Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße, Düsseldorf 40237, Germany

    • Mengji Yao
    • , Baptiste Gault
    • , Dirk Ponge
    •  & Dierk Raabe
  3. WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

    • Akihiko Hirata
    •  & Mingwei Chen
  4. Mathematics for Advanced Materials-OIL, AIST-Tohoku University, Sendai 980-8577, Japan

    • Akihiko Hirata
  5. Department of Materials Science and Engineering, Johns Hopkins University, Baltimore Maryland 21218, USA

    • Mingwei Chen

Authors

  1. Search for Suihe Jiang in:

  2. Search for Hui Wang in:

  3. Search for Yuan Wu in:

  4. Search for Xiongjun Liu in:

  5. Search for Honghong Chen in:

  6. Search for Mengji Yao in:

  7. Search for Baptiste Gault in:

  8. Search for Dirk Ponge in:

  9. Search for Dierk Raabe in:

  10. Search for Akihiko Hirata in:

  11. Search for Mingwei Chen in:

  12. Search for Yandong Wang in:

  13. Search for Zhaoping Lu in:

Contributions

Z.L. designed the study. S.J., H.C., H.W, X.L. and Y. Wu carried out the main experiments. S.J., H.W., Z.L. and D.R. analysed the data and wrote the main draft of the paper. M.Y., B.G., D.P. and D.R. prepared the APT samples and interpreted the results. M.C. and A.H. conducted the STEM characterization. Y.Wa. conducted the synchrotron experiments. All authors contributed to the discussion of the results, and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Zhaoping Lu.

Reviewer Information Nature thanks M. Moody, J. Morris Jr and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature22032

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.