Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A living mesoscopic cellular automaton made of skin scales


In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction–diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction–diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Colour pattern ontogeny in ocellated lizards.
Figure 2: Different combinations of chromatophores generate different scale colours.
Figure 3: Neighbourhood distributions of real and random patterns.
Figure 4: Scale colour changes follow a probabilistic CA.
Figure 5: Sensitivity analysis.
Figure 6: From RD to CA.


  1. Inaba, M., Yamanaka, H. & Kondo, S. Pigment pattern formation by contact-dependent depolarization. Science 335, 677 (2012)

    CAS  ADS  Article  Google Scholar 

  2. Frohnhofer, H. G., Krauss, J., Maischein, H. M. & Nusslein-Volhard, C. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140, 2997–3007 (2013)

    Article  Google Scholar 

  3. Hamada, H. et al. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development 141, 318–324 (2014)

    CAS  Article  Google Scholar 

  4. Irion, U. et al. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish. eLife 3, e05125 (2014)

    Article  Google Scholar 

  5. Fadeev, A., Krauss, J., Frohnhofer, H. G., Irion, U. & Nusslein-Volhard, C. Tight Junction Protein 1a regulates pigment cell organisation during zebrafish colour patterning. eLife 4, e06545 (2015)

    Article  Google Scholar 

  6. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    ADS  MathSciNet  Article  Google Scholar 

  7. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    CAS  Article  Google Scholar 

  8. Kondo, S., Iwashita, M. & Yamaguchi, M. How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int. J. Dev. Biol. 53, 851–856 (2009)

    Article  Google Scholar 

  9. Nakamasu, A., Takahashi, G., Kanbe, A. & Kondo, S. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Natl Acad. Sci. USA 106, 8429–8434 (2009)

    CAS  ADS  Article  Google Scholar 

  10. Kondo, S. & Miura, T. Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  11. Kuriyama, T., Miyaji, K., Sugimoto, M. & Hasegawa, M. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration. Zoolog. Sci. 23, 793–799 (2006)

    Article  Google Scholar 

  12. Cote, J., Meylan, S., Clobert, J. & Voituron, Y. Carotenoid-based coloration, oxidative stress and corticosterone in common lizards. J. Exp. Biol. 213, 2116–2124 (2010)

    CAS  Article  Google Scholar 

  13. Weiss, S. L., Foerster, K. & Hudon, J. Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus). Comp. Biochem. Physiol. B 161, 117–123 (2012)

    CAS  Article  Google Scholar 

  14. Saenko, S. V., Teyssier, J., van der Marel, D. & Milinkovitch, M. C. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol. 11, 105 (2013)

    Article  Google Scholar 

  15. Teyssier, J., Saenko, S. V., van der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015)

    CAS  ADS  Article  Google Scholar 

  16. Bagnara, J. T. & Matsumoto, J. in The Pigmentary System: Physiology and Pathophysiology (eds Nordlund, J. J. et al.) 11–59 (Blackwell, 2006)

  17. Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940)

  18. Parker, G. H. Animal color changes and their neurohumors. Q. Rev. Biol. 18, 205–227 (1943)

    Article  Google Scholar 

  19. Bagnara, J. T., Taylor, J. D. & Hadley, M. E. The dermal chromatophore unit. J. Cell Biol. 38, 67–79 (1968)

    CAS  Article  Google Scholar 

  20. Nilsson Sköld, H., Aspengren, S. & Wallin, M. Rapid color change in fish and amphibians—function, regulation, and emerging applications. Pigment Cell Melanoma Res. 26, 29–38 (2013)

    Article  Google Scholar 

  21. Cross, M. & Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge Univ. Press, 2009)

  22. Murray, J. D. Mathematical Biology 3rd edn, Vol. 2 Spatial Models and Biomedical Applications (Springer, 2002)

  23. Volpert, V. & Petrovskii, S. Reaction–diffusion waves in biology. Phys. Life Rev. 6, 267–310 (2009)

    CAS  ADS  Article  Google Scholar 

  24. Chopard, B. & Droz, M. Cellular Automata Modeling of Physical Systems 1st edn (Cambridge Univ. Press, 2005)

  25. Deutsch, A. & Dormann, S. Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis (Birkhauser, 2005)

  26. von Neumann, J. in Cerebral Mechanisms in Behavior—The Hixon Symposium (ed. Jeffress, L. A.) 288–326 (Wiley, 1951)

  27. von Neumann, J. & Burks, A. W. The Theory of Self-Reproducing Automata (Univ. Illinois Press, 1966)

  28. Wolfram, S. A New Kind of Science (Wolfram Media, 2002)

  29. Martins, A. F., Bessant, M., Manukyan, L. & Milinkovitch, M. C. R2OBBIE-3D, a fast robotic high-resolution system for quantitative phenotyping of surface geometry and colour-texture. PLoS One 10, e0126740 (2015)

    Article  Google Scholar 

  30. Furukawa, Y. & Ponce, J. Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vis. 84, 257–268 (2009)

    Article  Google Scholar 

  31. Woodham, R. J. Photometric methods for determining surface orientation from multiple images. Opt. Eng. 19, 139–144 (1980)

    ADS  Article  Google Scholar 

  32. Fricke, H. W. Behavior as part of ecological adaptation—in-situ studies in coral reef. Helgoländer Wiss. Meer. 24, 120–144 (1973)

    Article  Google Scholar 

  33. Booth, C. L. Evolutionary significance of ontogenic color-change in animals. Biol. J. Linn. Soc. 40, 125–163 (1990)

    Article  Google Scholar 

  34. Hill, T. L. Statistical Mechanics: Principles and Selected Applications (McGraw-Hill, 1956)

  35. Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, 2002)

  36. Mahalwar, P., Walderich, B., Singh, A. P. & Nusslein-Volhard, C. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Science 345, 1362–1364 (2014)

    CAS  ADS  Article  Google Scholar 

  37. Singh, A. P. & Nusslein-Volhard, C. Zebrafish stripes as a model for vertebrate colour pattern formation. Curr. Biol. 25, R81–R92 (2015)

    CAS  Article  Google Scholar 

  38. Milinkovitch, M. C. et al. Crocodile head scales are not developmental units but emerge from physical cracking. Science 339, 78–81 (2013)

    CAS  ADS  Article  Google Scholar 

  39. Hiep, V. H ., Keriven, R ., Labatut, P & Pons, J. P. Towards high-resolution large-scale multi-view stereo. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 1430–1437 (2009)

  40. Yebin, L . et al. Continuous depth estimation for multi-view stereo. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2121–2128 (2009)

  41. Furukawa, Y. & Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2010)

    Article  Google Scholar 

  42. Guennebaud, G. & Gross, M. Algebraic point set surfaces. ACM Trans. Graph. 26, 23 (2007)

    Article  Google Scholar 

  43. Ahalt, S. C., Krishnamurthy, A. K., Chen, P. & Melton, D. E. Competitive learning algorithms for vector quantization. Neural Netw. 3, 277–290 (1990)

    Article  Google Scholar 

  44. Oztireli, A. C. & Gross, M. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 170 (2012)

    Article  Google Scholar 

  45. Keijzer, M., Merelo, J. J., Romero, G. & Schoenauer, M. Evolving objects: a general purpose evolutionary computation library. Lect. Notes Comput. Sci. 2310, 231–242 (2002)

    Article  Google Scholar 

  46. Dhillon, D. S. J., Milinkovitch, M. C. & Zwicker, M. Bifurcation analysis of reaction diffusion systems on arbitrary surfaces. Bull. Math. Biol. 79, 788–827 (2017)

    MathSciNet  Article  Google Scholar 

  47. Madzvamuse, A., Chung, A. H. & Venkataraman, C. Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems. Proc. R. Soc. A 471, 20140546 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  48. Montandon, S. A., Tzika, A. C., Martins, A. F., Chopard, B. & Milinkovitch, M. C. Two waves of anisotropic growth generate enlarged follicles in the spiny mouse. EvoDevo 5, 33 (2014)

    Article  Google Scholar 

  49. Cooper, W. E. Jr & Greenberg, N. Reptilian coloration and behaviour. In Biology of the Reptilia Vol. 18 Physiology E. Hormones (eds Gans, C. & Crews, D.) 298–422 (Academic, 1992)

    Google Scholar 

  50. Hoekstra, H. E. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97, 222–234 (2006)

    CAS  Article  Google Scholar 

  51. Gray, S. M. & McKinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007)

    Article  Google Scholar 

  52. Steffen, J. E. & McGraw, K. J. How dewlap color reflects its carotenoid and pterin content in male and female brown anoles (Norops sagrei). Comp. Biochem. Physiol. B 154, 334–340 (2009)

    Article  Google Scholar 

  53. Magalhaes, I. S., Mwaiko, S. & Seehausen, O. Sympatric colour polymorphisms associated with nonrandom gene flow in cichlid fish of Lake Victoria. Mol. Ecol. 19, 3285–3300 (2010)

    CAS  Article  Google Scholar 

  54. Rosenblum, E. B., Römpler, H., Schöneberg, T. & Hoekstra, H. E. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proc. Natl Acad. Sci. USA 107, 2113–2117 (2010)

    CAS  ADS  Article  Google Scholar 

  55. Brakefield, P. M. & de Jong, P. W. A steep cline in ladybird melanism has decayed over 25 years: a genetic response to climate change? Heredity 107, 574–578 (2011)

    CAS  Article  Google Scholar 

  56. Kronforst, M. R. et al. Unraveling the thread of nature’s tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 25, 411–433 (2012)

    CAS  Article  Google Scholar 

  57. Olsson, M., Stuart-Fox, D. & Ballen, C. Genetics and evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. 24, 529–541 (2013)

    Article  Google Scholar 

  58. San-Jose, L. M., Granado-Lorencio, F., Sinervo, B. & Fitze, P. S. Iridophores and not carotenoids account for chromatic variation of carotenoid-based coloration in common lizards (Lacerta vivipara). Am. Nat. 181, 396–409 (2013)

    Article  Google Scholar 

  59. Spinner, M., Kovalev, A., Gorb, S. N. & Westhoff, G. Snake velvet black: hierarchical micro- and nanostructure enhances dark coloration in Bitis rhinoceros. Sci. Rep. 3, 1846 (2013)

    ADS  Article  Google Scholar 

Download references


We thank A. Debry and F. Montange for technical assistance with animals and B. Chopard for comments on the manuscript. A. Martins advised on R2OBBIE scans. This work was supported by grants to M.C.M. from the University of Geneva (Switzerland), the Swiss National Science Foundation (FNSNF, grants 31003A_140785 and SINERGIA CRSII3_132430), and the initiative (project EpiPhysX). S.S. was supported by the ERC AG COMPASP, the FNSNF, the NCCR SwissMAP and the Russian Science Foundation.

Author information

Authors and Affiliations



M.C.M. initiated the ocellated lizard breeding colony, identified the CA behaviour and proposed that the CA emerges from the superposition of skin geometry with a continuous RD system. S.A.M. performed 3D scanning and histology. S.A.M. and L.M. performed 3D geometry and colour texture reconstructions. L.M. and S.A.M. performed the alignments among 3D scans and the colour assignment of scales. L.M. and M.C.M. performed the statistical analyses and numerical modelling on real lizard lattices (all code written by L.M.). A.F., S.S. and M.C.M. performed the analyses and simulations (all code written by A.F.) on hexagonal lattices. S.S. proposed the discrete RD model, performed the mathematical derivation of discrete RD parameters from the continuous RD models and advised on numerical simulations. A.F. proposed the CA probability numerical derivation. M.C.M. supervised the whole study and wrote the manuscript. All authors agreed on the interpretation of data and approved the final version of the manuscript.

Corresponding author

Correspondence to Michel C. Milinkovitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Nature thanks L. Edelstein-Keshet, T. Miura, C. Tarnita and T. Woolley for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Scale detection, positioning and identification of neighbourhood

. a, From left to right: the 3D high-resolution scan allows the curvature of the animal surface to be measured; curvature thresholding yields domains whose centroids define the positions of scales; and the latter are used to build the Voronoi diagram and its corresponding Delaunay triangulation graph that identifies the neighbourhood of all scales. b, Each scale position is refined by moving it to the centroid of the corresponding polygon of smallest curvature (a 2D simplified representation is shown in the left panel; the refined position is at equal distances d from the two flanking points of smallest curvature).

Extended Data Figure 2 Derivation of the scale colour change probability function.

a, Four examples of exponential (red) and cubic (green) fits of the raw data (black plain line) for green scales; the mean square difference per point is generally lower for the cubic than the exponential fit. The graph labelled (I) is an example of a time point for which the value for 6 neighbours is not available, so this value is estimated with the fitted curve. b, On the left is a polynomial cubic fit of the 13 colour change probability distributions corresponding to three different individuals (blue, red and green curves) at different time points; the four curves labelled with Roman numbers correspond to the four graphs in a; all values are normalized with respect to the highest probability. In the middle is a normalized colour change probability distribution; each of the curves is normalized such that the sum of probabilities is 1. On the right the 13 normalized curves define a mean (±s.d.) colour change probability distribution.

Extended Data Figure 3 The 14 possible first-ring neighbourhood states for a green scale in an hexagonal lattice.

Assuming rotational isotropy (counting symmetrical cases as one case), the central green scale can have one state with one black neighbour (a), three states with two black neighbours (b), four states with three black neighbours (c), three states with four black neighbours (d), or one state with five or zero or six black neighbours (e, f and g).

Extended Data Figure 4 Interactions between melanophores (M) and xanthophores (X).

The figure represents the model developed in ref. 9. Melanophores and xanthophores interact negatively with each other at short range (green arrows). W is the long-range inhibitor that affects melanophores (blue dashed arrow) but not xanthophores (light blue dashed arrow and null parameter c5). W is modulated (red dotted arrows) positively by melanophores and negatively by xanthophores. c1, c2, c4, c5, c7 and c8 represent variables in the partial differential equations (see Methods).

Extended Data Figure 5 Switching of scale colour.

Density plots of skin scale colour (across all scales) for continuous (a) and discrete (b) RD simulations. For the continuous model, the colour of a hexagonal scale is computed as the mean among the (u − v)/max(u, v) values of all elements (pixels) in that hexagon. Both models generate a scale colour switching behaviour. Continuous RD simulations require smaller time steps than discrete RD, hence the higher number of iterations in the former.

Extended Data Figure 6 Skin colour pattern and scale size.

a, RD simulations with reduced diffusion at the scale borders show that a pattern appears within large-enough scales (magnification factors are indicated). b, This prediction is confirmed by the absence of a colour pattern within the ocellated lizard body scales (left panel) but the presence of a colour pattern within most of the large tail scales (right panel).

Extended Data Table 1 Eleven time points (TP0 to TP10), corresponding to age, expressed in weeks after hatching, at which three male ocellated lizards (LL09, LL10 and LL16) were scanned for colour texture and 3D reconstruction

Supplementary information

Time evolution of an ocellated lizard over three years of post-hatching development — real colours.

The juvenile pattern is made of white ocelli on a brown background and develops into a labyrinthine pattern of green and black scales. Four examples of scales switching colour are shown: blue circles, from green to black; green circle, from black to green, light-blue circle, from green to black to green. (MOV 2718 kb)

Time evolution of a male ocellated lizard over three years of post-hatching development — scale-colour switching.

Time evolution for the same individual as in Supplementary Video 1 but after scale colour assignment (see Methods). (MOV 376 kb)

Cellular Automaton (CA)

Time evolution simulation of an ocellated lizard skin pattern using a CA made of skin scales. The CA probability distribution has been inferred from actual time series of colour changes in real ocellated lizards. (MOV 362 kb)

Continuous reaction diffusion (cRD) simulation.

Time evolution of the colour pattern on a hexagonal lattice using a cRD model. Discretisation is such that each hexagon (skin scale) contains about 300 elements. Diffusion is reduced specifically along the scale boundaries. (MP4 1068 kb)

Continuous reaction diffusion (cRD) simulations generate a scale-colour switching behaviour

The colour of each element (pixel) is a continuous variable that can take any value between ‘black’ and ‘green’. Right panel, colour evolution of three scales; left panel, the corresponding patch of skin. The scales marked by a red or yellow dot switch from green to black or black to green, respectively. The scale marked by a blue dot starts to switch to black but then reverts to green because most of its neighbours become black. (MP4 847 kb)

Discrete reaction diffusion (dRD) simulation

Time evolution of the colour pattern on a hexagonal lattice using a dRD model. The entire reptile scales (hexagons) are used as discretisation units. Colour change is occurring according to RD equations. (MP4 941 kb)

Discrete reaction diffusion (dRD) simulations generate a scale-colour switching behaviour

The colour of each hexagon is a continuous variable that can take any value between ‘black’ and ‘green’. Right panel, colour evolution of three scales; left panel, the corresponding patch of skin. The scales marked by a red or yellow dot switch from green to black or black to green, respectively. The scale marked by a blue dot starts to switch to black but then reverts to green because most of its neighbours become black. (MP4 989 kb)

Cellular Automaton (CA) simulation

Time evolution of the colour pattern on a hexagonal lattice using a CA whose elements are the hexagons. The CA probability distribution has been inferred from the dynamic of colour changes in dRD simulations. Iterations are shown to indicate that the many colour changes occurring during the first iteration have been distributed across multiple frames of the video. (MP4 672 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manukyan, L., Montandon, S., Fofonjka, A. et al. A living mesoscopic cellular automaton made of skin scales. Nature 544, 173–179 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing