Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomic innovation for crop improvement

Abstract

Crop production needs to increase to secure future food supplies, while reducing its impact on ecosystems. Detailed characterization of plant genomes and genetic diversity is crucial for meeting these challenges. Advances in genome sequencing and assembly are being used to access the large and complex genomes of crops and their wild relatives. These have helped to identify a wide spectrum of genetic variation and permitted the association of genetic diversity with diverse agronomic phenotypes. In combination with improved and automated phenotyping assays and functional genomic studies, genomics is providing new foundations for crop-breeding systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Evolution and domestication of the common polyploid crops wheat and the genus Brassica.
Figure 2: Optimal sequencing systems for crop applications.
Figure 3: Erosion of genetic diversity in cultivated crops and its re-incorporation through genomics.
Figure 4: The assembly of haplotypes in a crop-breeding programme.

References

  1. Drèze, J. & Sen, A. K. Hunger and Public Action (Clarendon, 1989).

    Google Scholar 

  2. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  Google Scholar 

  3. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nature Chem. 4, 934–940 (2012).

    ADS  CAS  Google Scholar 

  4. Zhao, C. et al. Plausible rice yield losses under future climate warming. Nature Plants 3, 16202 (2016).

    PubMed  Google Scholar 

  5. Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).

    CAS  PubMed  Google Scholar 

  6. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    ADS  CAS  PubMed  Google Scholar 

  7. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett, M. D. & Leitch, I. J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot. 107, 467–590 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennetzen, J. L., Ma, J. & Devos, K. M. Mechanisms of recent genome size variation in flowering plants. Ann. Bot. 95, 127–132 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lisch, D. How important are transposons for plant evolution? Nature Rev. Genet. 14, 49–61 (2012).

    Google Scholar 

  11. Kim, M. Y. & Zilberman, D. DNA methylation as a system of plant genomic immunity. Trends Plant Sci. 19, 320–326 (2014).

    CAS  PubMed  Google Scholar 

  12. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2012).

    ADS  Google Scholar 

  13. Woodhouse, M. R. et al. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol. 8, e1000409 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Neale, D. B. et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15, R59 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Shulaev, V. et al. The genome of woodland strawberry (Fragaria vesca). Nature Genet. 43, 109–116 (2010).

    PubMed  Google Scholar 

  16. Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953 (2014).

    ADS  CAS  PubMed  Google Scholar 

  17. Bertioli, D. J. et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genet. 48, 438–446 (2016).

    CAS  PubMed  Google Scholar 

  18. Voskoboynik, A. et al. The genome sequence of the colonial chordate, Botryllus schlosseri . eLife 2, e00569 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Safar, J. et al. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J. 39, 960–968 (2004).

    CAS  PubMed  Google Scholar 

  20. International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).

  21. Sierro, N. et al. The tobacco genome sequence and its comparison with those of tomato and potato. Nature Commun. 5, 3833 (2014).

    ADS  CAS  Google Scholar 

  22. Zhang, T. et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnol. 33, 531–537 (2015).

    CAS  Google Scholar 

  23. Staňková, H. et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol. J. 14, 1523–1531 (2016).

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  24. Yang, J. et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genet. 48, 1225–1232 (2016).

    CAS  PubMed  Google Scholar 

  25. Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nature Rev. Genet. 16, 627–640 (2015).

    CAS  PubMed  Google Scholar 

  26. Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nature Methods 6, 291–295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weisenfeld, N. I. et al. Comprehensive variation discovery in single human genomes. Nature Genet. 46, 1350–1355 (2014). This paper highlights the development and application of the DISCOVAR assembler, which has been of crucial importance for the creation of assemblies with improved representation of sequence variants.

    CAS  PubMed  Google Scholar 

  28. Love, R. R., Weisenfeld, N. I., Jaffe, D. B., Besansky, N. J. & Neafsey, D. E. Evaluation of DISCOVAR de novo using a mosquito sample for cost-effective short-read genome assembly. BMC Genomics 17, 187 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nature Methods 12, 780–786 (2015). This article shows how the application of hybrid assembly methods has set new standards for sequence contiguity and the representation of diversity.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zimin, A. et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196, 875–890 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the mega-reads algorithm. Genome Res. http://dx.doi.org/10.1101/gr.213405.116 (2017). This paper shows how long-read sequencing technology coupled with the mega-reads algorithm can be used successfully to tackle a large and complex grass genome, which paves the way for the sequencing of multiple variants.

  32. Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13, 1050–1054 (2016). This study applies the PacBio long-read sequencing technology to resolving the highly heterozygous Vitis vinifera cv. Cabernet Sauvignon genome and demonstrates the importance of this technology for the assembly of complex plant genomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nature Biotechnol. 30, 693–700 (2012).

    CAS  Google Scholar 

  34. Goodwin, S. et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. 25, 1750–1756 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature Methods 12, 733–735 (2015). Refs 34 and 35 highlight the potential of nanopore sequencing technology, using yeast and bacterial genomes.

    CAS  PubMed  Google Scholar 

  36. Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnol. 31, 1119–1125 (2013).

    CAS  Google Scholar 

  37. Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis . Nature 538, 336–343 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Selvaraj, S., Dixon, J. R., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nature Biotechnol. 31, 1111–1118 (2013).

    CAS  Google Scholar 

  39. Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jarvis, D. E. et al. The genome of Chenopodium quinoa . Nature 542, 307–312 (2017).

    ADS  CAS  PubMed  Google Scholar 

  41. Mostovoy, Y. et al. A hybrid approach for de novo human genome sequence assembly and phasing. Nature Methods 13, 587–590 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng, G. X. Y. et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nature Biotechnol. 34, 303–311 (2016). As well as refs 41 and 43, this paper shows the considerable potential of linked-read sequencing technology for resolving the phasing of complete chromosomes.

    CAS  Google Scholar 

  43. Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. & Jaffe, D. B. Direct determination of diploid genome sequences. Preprint at http://biorxiv.org/content/early/2016/08/19/070425 (2016).

  44. Denoeud, F. et al. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014).

    ADS  CAS  PubMed  Google Scholar 

  45. D'Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).

    ADS  CAS  PubMed  Google Scholar 

  46. Clavijo, B. J. et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Preprint at http://biorxiv.org/content/early/2016/11/04/080796 (2016). This preprint presents open-source assembly methods that preserve genetic variation and have enabled the fast and low-cost assembly of the large and complex wheat genome.

  47. Grivet, L. & Arruda, P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr. Opin. Plant Biol. 5, 122–127 (2001).

    Google Scholar 

  48. Byrne, S. L. et al. A synteny-based draft genome sequence of the forage grass Lolium perenne . Plant J. 84, 816–826 (2015).

    CAS  PubMed  Google Scholar 

  49. Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K. & Akkaya, M. S. Ancient DNA from 8400 year-old Çatalhöyük wheat: implications for the origin of Neolithic agriculture. PLoS ONE 11, e0151974 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Dvorak, J., Luo, M.-C. & Akhunov, E. D. N. I. Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J. Genet. Plant Breed. 47, S20–S27 (2011).

    Google Scholar 

  51. Zheng, Y., Crawford, G. W., Jiang, L. & Chen, X. Rice domestication revealed by reduced shattering of archaeological rice from the lower Yangtze valley. Sci. Rep. 6, 28136 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doebley, J. F., Gaut, B. S. & Smith, B. D. The molecular genetics of crop domestication. Cell 127, 1309–1321 (2006).

    CAS  PubMed  Google Scholar 

  54. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    ADS  CAS  PubMed  Google Scholar 

  55. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).

    CAS  PubMed  Google Scholar 

  56. Wright, S. I. et al. The effects of artificial selection on the maize genome. Science 308, 1310–1314 (2005).

    CAS  PubMed  Google Scholar 

  57. Galili, G., Levy, A. A. & Feldman, M. Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum . Proc. Natl Acad. Sci. USA 83, 6524–6528 (1986).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Z. et al. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl Acad. Sci. USA 108, 18737–18742 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dubcovsky, J. & Dvorak, J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Massawe, F., Mayes, S. & Cheng, A. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21, 365–368 (2016).

    CAS  PubMed  Google Scholar 

  62. Tanksley, S. D. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277, 1063–1066 (1997).

    CAS  PubMed  Google Scholar 

  63. Jafarzadeh, J. et al. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS ONE 11, e0162860 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Munns, R. et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnol. 30, 360–364 (2012).

    CAS  Google Scholar 

  65. Borrill, P., Adamski, N. & Uauy, C. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008–1022 (2015).

    PubMed  Google Scholar 

  66. McCouch, S. R. et al. Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa . Euphytica 154, 317–339 (2006).

    Google Scholar 

  67. Liu, Z. et al. Expanding maize genetic resources with predomestication alleles: maize–teosinte introgression populations. Plant Genome http://dx.doi.org/10.3835/plantgenome2015.07.0053 (2016).

  68. Witek, K. et al. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nature Biotechnol. 34, 656–660 (2016).

    CAS  Google Scholar 

  69. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nature Biotechnol. 34, 652–655 (2016). This paper highlights a method with great promise for capturing the diversity of large genes families in populations of crops and their wild relatives.

    CAS  Google Scholar 

  70. Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat genomes. Proc. Natl Acad. Sci. USA 114, E913–E921 (2017). This paper describes functional genome resources that have been developed for tetraploid and hexaploid wheat lines — resources that will expedite many new areas of research.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Commun. 7, 12617 (2016).

    ADS  CAS  Google Scholar 

  72. Gil-Humanes, J. et al. High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. http://dx.doi.org/10.1111/tpj.13446 (2016).

  73. Biffen, R. H. & Engledow, F. L. Wheat-Breeding Investigations at the Plant Breeding Institute, Cambridge (His Majesty's Stationery Office, 1926).

    Google Scholar 

  74. Allen, A. M. et al. Characterization of a Wheat Breeders' Array suitable for high throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivium). Plant Biotechnol. J. http://dx.doi.org/10.1111/pbi.12635 (2016).

  75. Barabaschi, D. et al. Next generation breeding. Plant Sci. 242, 3–13 (2015).

    PubMed  Google Scholar 

  76. Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R. & Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242, 23–36 (2016).

    CAS  PubMed  Google Scholar 

  77. Vivek, B. S. et al. Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome http://dx.doi.org/10.3835/plantgenome2016.07.0070 (2017).

  78. Riaz, A., Periyannan, S., Aitken, E. & Hickey, L. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods 12, 17 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Varshney, R. K., Terauchi, R. & McCouch, S. R. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol. 12, e1001883 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Rodgers-Melnick, E., Vera, D. L., Bass, H. W. & Buckler, E. S. Open chromatin reveals the functional maize genome. Proc. Natl Acad. Sci. USA 113, E3177–E3184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Marulanda, J. J. et al. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Theor. Appl. Genet. 129, 1901–1913 (2016).

    CAS  PubMed  Google Scholar 

  82. Spindel, J. E. et al. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116, 395–408 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Patil, G. et al. Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 6, 19199 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jordan, K. W., Wang, S., Lun, Y. & Gardiner, L. J. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 16, 48 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Porreca, G. J. et al. Multiplex amplification of large sets of human exons. Nature Methods 4, 931–936 (2007).

    CAS  PubMed  Google Scholar 

  86. Saintenac, C. et al. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181, 393–403 (2008).

    PubMed  Google Scholar 

  87. Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352, 1113–1116 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Furbank, R. T. & Tester, M. Technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635–644 (2011).

    CAS  PubMed  Google Scholar 

  89. Fiorani, F. & Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 64, 267–291 (2013).

    CAS  PubMed  Google Scholar 

  90. Araus, J. L. & Cairns, J. E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61 (2013).

    PubMed  Google Scholar 

  91. Zamir, D. Where have all the crop phenotypes gone? PLoS Biol. 11, e1001595 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Loose, M., Malla, S. & Stout, M. Real-time selective sequencing using nanopore technology. Nature Methods 13, 751–754 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Rand, A. C. et al. Cytosine variant calling with high-throughput nanopore sequencing. Preprint at http://biorxiv.org/content/early/2016/04/04/047134 (2016).

  94. Simpson, J. T. et al. Detecting DNA methylation using the Oxford Nanopore Technologies MinION sequencer. Preprint at http://biorxiv.org/content/early/2016/04/04/047142 (2016).

Download references

Acknowledgements

This work was supported by strategic programme funding from the UK Biotechnology and Biological Sciences Research Council (BBSRC) (GRO BB/J004588/1) to M.B., a BBSRC strategic LoLa award (BB/J003913/1) to M.B. and M.C. and funding from the Gatsby Charitable Foundation to K.K. and the 2Blades Foundation to B.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Bevan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks V. Albert, J. Schmutz, T. Mitchell-Olds and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bevan, M., Uauy, C., Wulff, B. et al. Genomic innovation for crop improvement. Nature 543, 346–354 (2017). https://doi.org/10.1038/nature22011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22011

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing