Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The plant perceptron connects environment to development

Abstract

Plants cope with the environment in a variety of ways, and ecological analyses attempt to capture this through life-history strategies or trait-based categorization. These approaches are limited because they treat the trade-off mechanisms that underlie plant responses as a black box. Approaches that involve the molecular or physiological analysis of plant responses to the environment have elucidated intricate connections between developmental and environmental signals, but in only a few well-studied model species. By considering diversity in the plant response to the environment as the adaptation of an information-processing network, new directions can be found for the study of life-history strategies, trade-offs and evolution in plants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Plant development and life-history strategies.
Figure 2: Connectivity in plant growth-regulatory networks.
Figure 3: Environmental control of growth networks.
Figure 4: Relating signal perception to plant traits.

References

  1. Heywood, V., Brummitt, R. & Culham, A. Flowering Plants of the World (Croom Helm, 2007).

    Google Scholar 

  2. Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).

    Google Scholar 

  3. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). This trait-based analysis of a data set containing about 46,000 plant species from locations across the world reveals that most species can be categorized according to their size and leaf economics; the general pattern observed, together with the outliers, is enabling the construction of hypotheses that suggest how the trait spectrum of plants is determined by internal networks.

    ADS  PubMed  Google Scholar 

  4. Abley, K., Locke, J. C. W. & Leyser, H. M. O. Developmental mechanisms underlying variable, invariant and plastic phenotypes. Ann. Bot. 117, 733–748 (2016). This thoughtful review demonstrates for a number of traits how environmental variability can be the basis of selection for plasticity.

    PubMed  PubMed Central  Google Scholar 

  5. Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).

    Google Scholar 

  6. Freschet, G. T., Swart, E. M. & Cornelissen, J. H. C. Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytol. 206, 1247–1260 (2015).

    CAS  PubMed  Google Scholar 

  7. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S. & Van Wees, S. C. M. Networking by small-molecule hormones in plant immunity. Nature Chem. Biol. 5, 308–316 (2009).

    CAS  Google Scholar 

  8. Pierik, R. & Testerink, C. The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol. 166, 5–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Rellán-Álvarez, R., Lobet, G. & Dinneny, J. R. Environmental control of root system biology. Annu. Rev. Plant Biol. 67, 619–642 (2016).

    PubMed  Google Scholar 

  10. Kempel, A., Schadler, M., Chrobock, T., Fischer, M. & van Kleunen, M. Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc. Natl Acad. Sci. USA 108, 5685–5689 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the 'cry for help'. Trends Plant Sci. 15, 167–175 (2010).

    CAS  PubMed  Google Scholar 

  12. Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).

    Google Scholar 

  13. Alpert, P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 209, 1575–1584 (2006).

    PubMed  Google Scholar 

  14. Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or to defend. Q. Rev. Biol. 67, 283–335 (1992).

    Google Scholar 

  15. Agrawal, A. A. Current trends in the evolutionary ecology of plant defence. Funct. Ecol. 25, 420–432 (2011).

    Google Scholar 

  16. Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Geng, Y. et al. A spatio–temporal understanding of growth regulation during the salt stress response in Arabidopsis . Plant Cell 25, 2132–2154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Campos, M. L. et al. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth–defense tradeoffs. Nature Commun. 7, 12570 (2016). This study describes genetic changes in plants that result in the parallel activation of transcriptional programs for jasmonic-acid-dependent defence and light-signalling-dependent growth, revealing that there is no growth–defence trade-off; such plants can therefore be used as tools with which to study the fitness consequences of the absence of a trade-off.

    ADS  CAS  Google Scholar 

  19. Karasov, T. L. et al. The long-term maintenance of a resistance polymorphism through diffuse interactions. Nature 512, 436–440 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pérez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).

    PubMed  Google Scholar 

  21. Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005).

    ADS  CAS  PubMed  Google Scholar 

  22. Hasegawa, P. M., Bressan, R. A., Zhu, J. K. & Bohnert, H. J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499 (2000).

    CAS  PubMed  Google Scholar 

  23. Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958).

    CAS  PubMed  Google Scholar 

  24. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

    ADS  CAS  PubMed  Google Scholar 

  25. Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet. 8, 450–461 (2007).

    CAS  PubMed  Google Scholar 

  26. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    CAS  PubMed  Google Scholar 

  27. Grime, J. P. & Pierce, S. The Evolutionary Strategies that Shape Ecosystems (Wiley-Blackwell, 2012).

    Google Scholar 

  28. Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).

    Google Scholar 

  29. Fine, P. V. A. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).

    PubMed  Google Scholar 

  30. Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).

    Google Scholar 

  31. van Velzen, E. & Etienne, R. S. The importance of ecological costs for the evolution of plant defense against herbivory. J. Theor. Biol. 372, 89–99 (2015).

    MathSciNet  PubMed  MATH  Google Scholar 

  32. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS  CAS  PubMed  Google Scholar 

  33. Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).

    PubMed  Google Scholar 

  34. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).

    Google Scholar 

  35. Meiners, S. J., Pickett, S. T. A. & Cadenasso, M. L. An Integrative Approach to Successional Dynamics (Cambridge Univ. Press, 2015).

    Google Scholar 

  36. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Google Scholar 

  37. Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).

    PubMed  Google Scholar 

  38. Banta, J. A. et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana . Ecol. Lett. 15, 769–777 (2012).

    PubMed  Google Scholar 

  39. Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).

    PubMed  Google Scholar 

  40. Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed  Google Scholar 

  41. Baxendale, C., Orwin, K. H., Poly, F., Pommier, T. & Bardgett, R. D. Are plant-soil feedback responses explained by plant traits? New Phytol. 204, 408–423 (2014).

    PubMed  Google Scholar 

  42. Mommer, L., Kirkegaard, J. & van Ruijven, J. Root–root interactions: towards a rhizosphere framework. Trends Plant Sci. 21, 209–217 (2016).

    CAS  PubMed  Google Scholar 

  43. Coen, E. Cells to Civilizations: the Principles of Change that Shape Life (Princeton Univ. Press, 2012).

    Google Scholar 

  44. Scheres, B. Stem-cell niches: nursery rhymes across kingdoms. Nature Rev. Mol. Cell Biol. 8, 345–354 (2007).

    CAS  Google Scholar 

  45. Smith, R. S. et al. A plausible model of phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1301–1306 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bilsborough, G. D. et al. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl Acad. Sci. USA 108, 3424–3429 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mähönen, A. P. et al. PLETHORA gradient formation mechanism separates auxin responses. Nature 515, 125–129 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  48. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    ADS  CAS  PubMed  Google Scholar 

  49. Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003).

    PubMed  Google Scholar 

  50. Davies, P. Plant Hormones: Physiology, Biochemistry and Molecular Biology (Springer Science & Business Media, 2013).

    Google Scholar 

  51. Santner, A. & Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009).

    ADS  CAS  PubMed  Google Scholar 

  52. Depuydt, S. & Hardtke, C. S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 21, R365–R373 (2011).

    CAS  PubMed  Google Scholar 

  53. Domagalska, M. A. & Leyser, O. Signal integration in the control of shoot branching. Nature Rev. Mol. Cell Biol. 12, 211–221 (2011).

    CAS  Google Scholar 

  54. Dello Ioio, R. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008).

    ADS  CAS  PubMed  Google Scholar 

  55. De Rybel, B. et al. Integration of growth and patterning during vascular tissue formation in Arabidopsis . Science 345, 1255215 (2014).

    PubMed  Google Scholar 

  56. Besnard, F. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505, 417–421 (2014).

    ADS  CAS  PubMed  Google Scholar 

  57. Prusinkiewicz, P. et al. Control of bud activation by an auxin transport switch. Proc. Natl Acad. Sci. USA 106, 17431–17436 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shinohara, N., Taylor, C. & Leyser, O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biol 11, e1001474 (2013). This study reveals a direct mechanism for strigolactone-mediated feedback on polar auxin transport and provides a concrete mechanism for an important long-range signalling process that coordinates the development of roots and shoots.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 (1999).

    ADS  CAS  PubMed  Google Scholar 

  60. Matsuzaki, Y., Ogawa-Ohnishi, M., Mori, A. & Matsubayashi, Y. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis . Science 329, 1065–1067 (2010).

    ADS  CAS  PubMed  Google Scholar 

  61. Clark, S. E., Williams, R. W. & Meyerowitz, E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis . Cell 89, 575–585 (1997).

    CAS  PubMed  Google Scholar 

  62. Shinohara, H., Mori, A., Yasue, N., Sumida, K. & Matsubayashi, Y. Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis . Proc. Natl Acad. Sci. USA 113, 3897–3902 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Araya, T. et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc. Natl Acad. Sci. USA 111, 2029–2034 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Searle, I. R. et al. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299, 109–112 (2003).

    ADS  CAS  PubMed  Google Scholar 

  65. Nemhauser, J. L., Hong, F. X. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    CAS  PubMed  Google Scholar 

  66. Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    CAS  PubMed  Google Scholar 

  67. Sun, Y. et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis . Dev. Cell 19, 765–777 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vitasse, Y. et al. Elevational adaptation and plasticity in seedling phenology of temperate deciduous tree species. Oecologia 171, 663–678 (2013).

    ADS  PubMed  Google Scholar 

  69. van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Chen, M., Chory, J. & Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117 (2004).

    CAS  PubMed  Google Scholar 

  71. Rizzini, L. et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332, 103–106 (2011).

    ADS  CAS  PubMed  Google Scholar 

  72. Li, L. et al. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26, 785–790 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    ADS  CAS  PubMed  Google Scholar 

  74. Djakovic-Petrovic, T., de Wit, M., Voesenek, L. A. & Pierik, R. DELLA protein function in growth responses to canopy signals. Plant J. 51, 117–126 (2007).

    CAS  PubMed  Google Scholar 

  75. Haga, K., Takano, M., Neumann, R. & Iino, M. The rice coleoptile phototropism 1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Plant Cell 17, 103–115 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding, Z. et al. Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis . Nature Cell Biol. 13, 447–452 (2011).

    CAS  PubMed  Google Scholar 

  77. Andrés, F. & Coupland, G. The genetic basis of flowering responses to seasonal cues. Nature Rev. Genet. 13, 627–639 (2012).

    PubMed  Google Scholar 

  78. Rohde, A. & Bhalerao, R. P. Plant dormancy in the perennial context. Trends Plant Sci. 12, 217–223 (2007).

    CAS  PubMed  Google Scholar 

  79. Yanovsky, M. J. & Kay, S. A. Molecular basis of seasonal time measurement in Arabidopsis . Nature 419, 308–312 (2002).

    ADS  CAS  PubMed  Google Scholar 

  80. Kaiserli, E. et al. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev. Cell 35, 311–321 (2015). In this study, natural variation is exploited to identify a signal integrator of light and photoperiodic pathways; an integrator protein forms a complex with a photoreceptor protein that recruits a transcription factor with importance for daylight-dependent floral induction.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chinnusamy, V., Zhu, J. & Zhu, J. K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 12, 444–451 (2007).

    CAS  PubMed  Google Scholar 

  82. Qu, A. L., Ding, Y. F., Jiang, Q. & Zhu, C. Molecular mechanisms of the plant heat stress response. Biochem. Biophys. Res. Commun. 432, 203–207 (2013).

    CAS  PubMed  Google Scholar 

  83. Zhu, D., Rosa, S. & Dean, C. Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J. Mol. Biol. 427, 659–669 (2015).

    CAS  PubMed  Google Scholar 

  84. Wang, R. et al. PEP1 regulates perennial flowering in Arabis alpina . Nature 459, 423–427 (2009).

    ADS  CAS  PubMed  Google Scholar 

  85. Box, M. S. et al. ELF3 controls thermoresponsive growth in Arabidopsis . Curr. Biol. 25, 194–199 (2015).

    CAS  PubMed  Google Scholar 

  86. Kumar, S. V. et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242–245 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nieto, C., López-Salmerón, V., Davière, J. M. & Prat, S. ELF3–PIF4 interaction regulates plant growth independently of the evening complex. Curr. Biol. 25, 187–193 (2015).

    CAS  PubMed  Google Scholar 

  88. Franklin, K. A. et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc. Natl Acad. Sci. USA 108, 20231–20235 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patel, D. et al. Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA. Plant J. 73, 980–992 (2013).

    CAS  PubMed  Google Scholar 

  90. Krouk, G. et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev. Cell 18, 927–937 (2010).

    CAS  PubMed  Google Scholar 

  91. Tabata, R. et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science 346, 343–346 (2014).

    ADS  CAS  PubMed  Google Scholar 

  92. Pérez-Torres, C. A. et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20, 3258–3272 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. Kellermeier, F. et al. Analysis of the root system architecture of Arabidopsis provides a quantitative readout of crosstalk between nutritional signals. Plant Cell 26, 1480–1496 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Barberon, M. et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447–459 (2016).

    CAS  PubMed  Google Scholar 

  95. Pierik, R. & Testerink, C. The art of being flexible: how to escape from shade, salt, and drought. Plant Physiol. 166, 5–22 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Julkowska, M. M. & Testerink, C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20, 586–594 (2015).

    CAS  PubMed  Google Scholar 

  97. Yoshida, T. et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 38, 35–49 (2015).

    CAS  PubMed  Google Scholar 

  98. Claeys, H. & Inze, D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 162, 1768–1779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    ADS  CAS  PubMed  Google Scholar 

  100. Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    CAS  PubMed  Google Scholar 

  101. Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).

    CAS  PubMed  Google Scholar 

  102. Belkhadir, Y., Yang, L., Hetzel, J., Dangl, J. L. & Chory, J. The growth-defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends Biochem. Sci. 39, 447–456 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Smakowska, E., Kong, J., Busch, W. & Belkhadir, Y. Organ-specific regulation of growth–defense tradeoffs by plants. Curr. Opin. Plant Biol. 29, 129–137 (2016).

    CAS  PubMed  Google Scholar 

  104. Rodriguez, E., El Ghoul, H., Mundy, J. & Petersen, M. Making sense of plant autoimmunity and 'negative regulators'. FEBS J. 283, 1385–1391 (2016).

    CAS  PubMed  Google Scholar 

  105. Pieterse, C. M. J., Pierik, R. & Van Wees, S. C. M. Different shades of JAZ during plant growth and defense. New Phytol. 204, 261–264 (2014).

    PubMed  Google Scholar 

  106. Ballaré, C. L. Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335–363 (2014).

    PubMed  Google Scholar 

  107. Lozano-Durán, R. et al. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2, e00983 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. De Vleesschauwer, D., Gheysen, G. & Hofte, M. Hormone defense networking in rice: tales from a different world. Trends Plant Sci. 18, 555–565 (2013).

    CAS  PubMed  Google Scholar 

  109. Vlot, A. C., Dempsey, D. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177–206 (2009).

    CAS  PubMed  Google Scholar 

  110. Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann. Bot. 112, 1655–1665 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Mitra, S. & Baldwin, I. T. RuBPCase activase (RCA) mediates growth–defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in Nicotiana attenuata . New Phytol. 201, 1385–1395 (2014).

    CAS  PubMed  Google Scholar 

  112. Machado, R. A., Arce, C. C., Ferrieri, A. P., Baldwin, I. T. & Erb, M. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta . New Phytol. 207, 91–105 (2015).

    CAS  PubMed  Google Scholar 

  113. van Dam, N. M. & Heil, M. Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99, 77–88 (2011).

    Google Scholar 

  114. Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. Funct. Ecol. 27, 567–573 (2013).

    Google Scholar 

  115. de la Peña, E. & Bonte, D. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale . Ecol. Evol. 4, 3309–3319 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Kostenko, O., Mulder, P. P. J., Courbois, M. & Bezemer, T. M. Effects of plant diversity on the concentration of secondary plant metabolites and the density of arthropods on focal plants in the field. J. Ecol. (2016).

  117. Pozo, M. J. & Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398 (2007).

    CAS  PubMed  Google Scholar 

  118. Dinneny, J. R. et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320, 942–945 (2008).

    ADS  CAS  PubMed  Google Scholar 

  119. Birnbaum, K. et al. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nature Methods 2, 615–619 (2005).

    CAS  PubMed  Google Scholar 

  120. Harlan, J. R. Crops and Man 2nd edn (American Society of Agronomy and Crop Science Society of America, 1992).

    Google Scholar 

  121. Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. Nature Rev. Genet. 15, 34–48 (2014).

    CAS  PubMed  Google Scholar 

  122. Fu, J. et al. System-wide molecular evidence for phenotypic buffering in Arabidopsis . Nature Genet. 41, 166–167 (2009).

    CAS  PubMed  Google Scholar 

  123. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nature Rev. Genet. 16, 197–212 (2015).

    CAS  PubMed  Google Scholar 

  125. Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).

    ADS  CAS  PubMed  Google Scholar 

  126. Poelman, E. H., Broekgaarden, C., Van Loon, J. J. A. & Dicke, M. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol. Ecol. 17, 3352–3365 (2008).

    CAS  PubMed  Google Scholar 

  127. Lambers, H., Raven, J. A., Shaver, G. R. & Smith, S. E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95–103 (2008).

    PubMed  Google Scholar 

  128. Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA 109, 14058–14062 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Van Nuland, M. E. et al. Plant–soil feedbacks: connecting ecosystem ecology and evolution. Funct. Ecol. 30, 1032–1042 (2016). Complex plant–soil feedback interactions are now recognized as being able to drive the evolution of plant traits; this review discusses how environmental gradients may drive the evolution of plant traits and how such evolution feeds back to the entire ecosystem.

    Google Scholar 

  130. Wooliver, R., Pfennigwerth, A. A., Bailey, J. K. & Schweitzer, J. A. Plant functional constraints guide macroevolutionary trade-offs in competitive and conservative growth responses to nitrogen. Funct. Ecol. 30, 1099–1108 (2016).

    Google Scholar 

  131. Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J. P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).

    ADS  CAS  PubMed  Google Scholar 

  132. Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002).

    CAS  PubMed  Google Scholar 

  133. Blumenthal, D. M. Interactions between resource availability and enemy release in plant invasion. Ecol. Lett. 9, 887–895 (2006).

    PubMed  Google Scholar 

  134. Seabloom, E. W. et al. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Commun. 6, 7710 (2015). This study provides a new framework for promoting the understanding of disease dynamics and how research on species that attack plants can be linked to community ecology; when linked to a plant trait-based methods, such an approach can help to bridge the gap between ecology and molecular biology.

    ADS  CAS  Google Scholar 

  135. Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83, 887–889 (1995).

    Google Scholar 

  136. Fitzpatrick, C. R. et al. The importance of plant genotype and contemporary evolution for terrestrial ecosystem processes. Ecology 96, 2632–2642 (2015).

    PubMed  Google Scholar 

  137. Hawkes, C. V. Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am. Nat. 170, 832–843 (2007).

    PubMed  Google Scholar 

  138. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001).

    ADS  CAS  PubMed  Google Scholar 

  139. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Many more papers than are listed formed the basis of the ideas expressed in this Review and we apologize to those whose work was not cited due to space constraints. We thank M. Bezemer, A. Biere, B. Johnson, M. Laskowski, R. Pierik, C. Pieterse, D. de Ridder and C. Testerink for constructive comments on an earlier version of the manuscript. Image credits: Fig. 1d: X. Cheng; Fig. 1f: D. Donnelly, J. Leake and D. Read.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Scheres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks P. Benfey, O. Leyser and T. Mitchell-Olds for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scheres, B., van der Putten, W. The plant perceptron connects environment to development. Nature 543, 337–345 (2017). https://doi.org/10.1038/nature22010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing