Extended Data Figure 2 : Granule cells encode movement in a forelimb movement operant task.

From: Cerebellar granule cells encode the expectation of reward

Extended Data Figure 2

a, b, Distribution of times of peak (a) or minimum (b) trial-averaged fluorescence response relative to reach midpoint (blue histograms, n = 561 total neurons from 6 mice). Orange histograms denote the subset of cells whose peak (a) or minimum (b) trial-averaged fluorescence modulation was significant. 85% of cells exhibited significant positive modulation, while 90% of cells exhibited significant negative modulation, at a point between –2 to 2 s relative to forelimb movement. To compute significance we compared observed peak and minimum fluorescence to fluorescence for randomized datasets (Methods). c, For each cell we computed the Spearman correlation coefficient between single-trial fluorescence (mean from –0.1 to +0.3 s relative to movement midpoint) and peak movement velocity. Histogram denotes distribution of Spearman coefficients across neurons (n = 561 total neurons from 6 mice). Neurons correlated with P < 0.01 (permutation test) are shown in orange. d, Mean movement-aligned fluorescence of granule cells whose single-trial fluorescence correlated significantly with peak movement speed, shown in c (n = 111 neurons with P < 0.01 for correlation coefficients, shown in orange in c). e, f, Two example granule cells that encode licking. For these cells, response differences between reward outcomes (top row, examples) can be explained by the encoding of the licking response on rewarded trials (bottom row, 25 trials with the most and least licking from 0.1 to 1 s), n = 209 rewarded and 68 omitted reward trials. Dashed vertical lines denote average time of forelimb movement midpoint, solid vertical lines denote time of reward. In this and all subsequent figures, shaded regions denote s.e.m.