Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Star formation inside a galactic outflow


Recent observations have revealed massive galactic molecular outflows1,2,3 that may have the physical conditions (high gas densities4,5,6) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself7,8,9,10,11. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies12, to the evolution in size and velocity dispersion of the spheroidal component of galaxies11,13, and would contribute to the population of high-velocity stars, which could even escape the galaxy13. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies9. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics14,15.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spectral decomposition of the outflow in IRAS F23128−5919.
Figure 2: Diagnostic diagrams.
Figure 3: Ionization parameter.
Figure 4: Kinematics of young stars compared with the gas kinematics.


  1. Feruglio, C. et al. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155–L158 (2010)

    ADS  Article  Google Scholar 

  2. Sturm, E. et al. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. Astrophys. J. 733, L16–L20 (2011)

    ADS  Article  Google Scholar 

  3. Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21–A55 (2014)

    Article  Google Scholar 

  4. Aalto, S. et al. Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind. Astron. Astrophys. 537, A44–A51 (2012)

    Article  Google Scholar 

  5. Aalto, S. et al. High resolution observations of HCN and HCO+J = 3–2 in the disk and outflow of Mrk 231. Detection of vibrationally excited HCN in the warped nucleus. Astron. Astrophys. 574, A85–A96 (2015)

    Article  Google Scholar 

  6. Sakamoto, K. et al. P Cygni profiles of molecular lines toward Arp 220 Nuclei. Astrophys. J. 700, L104–L108 (2009)

    ADS  CAS  Article  Google Scholar 

  7. Ishibashi, W. & Fabian, A. C. Active galactic nucleus feedback and triggering of star formation in galaxies. Mon. Not. R. Astron. Soc. 427, 2998–3005 (2012)

    ADS  Article  Google Scholar 

  8. Zubovas, K., Nayakshin, S., Sazonov, S. & Sunyaev, R. Outflows of stars due to quasar feedback. Mon. Not. R. Astron. Soc. 431, 793–798 (2013)

    ADS  Article  Google Scholar 

  9. Silk, J. Unleashing positive feedback: linking the rates of star formation, supermassive black hole accretion, and outflows in distant galaxies. Astrophys. J. 772, 112 (2013)

    ADS  Article  Google Scholar 

  10. Zubovas, K. & King, A. R. Galaxy-wide outflows: cold gas and star formation at high speeds. Mon. Not. R. Astron. Soc. 439, 400–406 (2014)

    ADS  Article  Google Scholar 

  11. Ishibashi, W., Fabian, A. C. & Canning, R. E. A. Can AGN feedback-driven star formation explain the size evolution of massive galaxies? Mon. Not. R. Astron. Soc. 431, 2350–2355 (2013)

    ADS  Article  Google Scholar 

  12. Gaibler, V., Khochfar, S., Krause, M. & Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 425, 438–449 (2012)

    ADS  Article  Google Scholar 

  13. Dugan, Z., Bryan, S., Gaibler, V., Silk, J. & Haas, M. Stellar signatures of AGN-jet-triggered star formation. Astrophys. J. 796, 113 (2014)

    ADS  Article  Google Scholar 

  14. Leslie, S. K., Rich, J. A., Kewley, L. J. & Dopita, M. A. The energy source and dynamics of infrared luminous galaxy ESO 148–IG002. Mon. Not. R. Astron. Soc. 444, 1842–1853 (2014)

    ADS  Article  Google Scholar 

  15. Bellocchi, E., Arribas, S., Colina, L. & Miralles-Caballero, D. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties. Astron. Astrophys. 557, A59 (2013)

    ADS  Article  Google Scholar 

  16. Brightman, M. & Nandra, K. An XMM-Newton spectral survey of 12 μm selected galaxies—I. X-ray data. Mon. Not. R. Astron. Soc. 413, 1206–1235 (2011)

    ADS  CAS  Article  Google Scholar 

  17. Arribas, S., Colina, L., Bellocchi, E., Maiolino, R. & Villar-Martín, M. Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies. Astron. Astrophys. 568, A14 (2014)

    ADS  Article  Google Scholar 

  18. Cazzoli, S., Arribas, S., Maiolino, R. & Colina, L. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron. Astrophys. 590, A125 (2016)

    ADS  Article  Google Scholar 

  19. Piqueras López, J., Colina, L., Arribas, S., Alonso-Herrero, A. & Bedregal, A. G. VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies. I. Atlas of the 2D gas structure. Astron. Astrophys. 546, A64 (2012)

    ADS  Article  Google Scholar 

  20. Kewley, L. J., Groves, B., Kauffmann, G. & Heckman, T. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 372, 961–976 (2006)

    ADS  CAS  Article  Google Scholar 

  21. Pérez-Montero, E. & Contini, T. The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines. Mon. Not. R. Astron. Soc. 398, 949–960 (2009)

    ADS  Article  Google Scholar 

  22. Shapley, A. E. et al. The MOSDEF survey: excitation properties of z ≈ 2.3 star-forming galaxies. Astrophys. J. 801, 88 (2015)

    ADS  Article  Google Scholar 

  23. Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008)

    ADS  CAS  Article  Google Scholar 

  24. Colina, L. et al. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective. Astron. Astrophys. 578, A48 (2015)

    Article  Google Scholar 

  25. Oliva, E. et al. NICS-TNG infrared spectroscopy of NGC 1068: the first extragalactic measurement of [P ii] and a new tool to constrain the origin of [Fe ii] line emission in galaxies. Astron. Astrophys. 369, L5–L8 (2001)

    ADS  CAS  Article  Google Scholar 

  26. González Delgado, R. M., Cerviño, M., Martins, L. P., Leitherer, C. & Hauschildt, P. H. Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths. Mon. Not. R. Astron. Soc. 357, 945–960 (2005)

    ADS  Article  Google Scholar 

  27. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    ADS  CAS  Article  Google Scholar 

  28. Rodríguez-Zaurín, J. et al. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. III. The atlas of the stellar and ionized gas distribution. Astron. Astrophys. 527, A60 (2011)

    Article  Google Scholar 

  29. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Astrophys. J. 346, 1055–1077 (2003)

    CAS  Google Scholar 

  30. Diaz, A. I., Castellanos, M., Terlevich, E. & Luisa Garcia-Vargas, M. Chemical abundances and ionizing clusters of Hii regions in the LINER galaxy NGC 4258. Mon. Not. R. Astron. Soc. 318, 462–474 (2000)

    ADS  CAS  Article  Google Scholar 

  31. Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017)

    ADS  CAS  Article  Google Scholar 

  32. Sanchez-Blazquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006)

    ADS  CAS  Article  Google Scholar 

  33. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105–A119 (2011)

    Article  Google Scholar 

  34. Modigliani, A . et al. The X-shooter pipeline. Proc. SPIE III, 7737, 773728 (2010)

  35. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    ADS  CAS  Article  Google Scholar 

  36. Riffel, R., Rodriguez-Ardila, A. & Pastoriza, M. G. A. 0.8-2.4 μm spectral atlas of active galactic nuclei. Astron. Astrophys. 457, 61–70 (2006)

    ADS  CAS  Article  Google Scholar 

  37. Gerardy, C. & Fesen, R. A. Near-infrared spectroscopy of the Cassiopeia A and Kepler supernova remnants. Astron. J. 121, 2781–2791 (2001)

    ADS  CAS  Article  Google Scholar 

  38. Garcia Lopez, R. et al. IR diagnostics of embedded jets: kinematics and physical characteristics of the HH46-47 jet. Astron. Astrophys. 511, A5–A16 (2010)

    Article  Google Scholar 

  39. Rodríguez-Ardila, A., Prieto, M. A., Portilla, J. G. & Tejeiro, M. The near-infrared coronal line spectrum of 54 nearby active galactic nuclei. Astrophys. J. 743, 100–116 (2011)

    ADS  Article  Google Scholar 

  40. van der Laan, T. P. R., Schinnerer, E., Böker, T. & Armus, L. Near-infrared long-slit spectra of Seyfert galaxies: gas excitation across the central kiloparsec. Astron. Astrophys. 560, A99–A116 (2013)

    ADS  Article  Google Scholar 

  41. Müller-Sánchez, F. et al. Outflows from active galactic nuclei: kinematics of the narrow-line and coronal-line regions in Seyfert galaxies. Astrophys. J. 739, 69–108 (2011)

    ADS  Article  Google Scholar 

  42. Maiolino, R., Krabbe, A., Thatte, N. & Genzel, R. Seyfert activity and nuclear star formation in the Circinus galaxy. Astrophys. J. 493, 650–665 (1998)

    ADS  CAS  Article  Google Scholar 

  43. Marconi, A., van der Werf, P. P., Moorwood, A. F. M. & Oliva, E. Infrared and visible coronal lines in NGC 1068. Astron. Astrophys. 315, 335–342 (1996)

    ADS  CAS  Google Scholar 

  44. Piqueras López, J., Colina, L., Arribas, S., Alonso-Herrero, A. & Bedregal, A. G. VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies. I. Atlas of the 2D gas structure. Astron. Astrophys. 546, A46–A83 (2012)

    Article  Google Scholar 

  45. Thuan, T. X. & Izotov, Y. I. High-ionization emission in metal-deficient blue compact dwarf galaxies. Astrophys. J. 161 (Suppl.), 240–270 (2005)

    ADS  CAS  Article  Google Scholar 

  46. Izotov, Y. I., Thuan, T. X. & Privon, G. The detection of [Ne v] emission in five blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 427, 1229–1237 (2012)

    ADS  CAS  Article  Google Scholar 

  47. Cresci, G. et al. The MAGNUM survey: positive feedback in the nuclear region of NGC 5643 suggested by MUSE. Astron. Astrophys. 582, A63–A71 (2015)

    Article  Google Scholar 

  48. Carniani, S. et al. Fast outflows and star formation quenching in quasar host galaxies. Astron. Astrophys. 591, A28–A36 (2016)

    Article  Google Scholar 

Download references


R.M., S.Car. and F.B. acknowledge support by the Science and Technology Facilities Council (STFC). R.M. acknowledges ERC Advanced Grant 695671 “QUENCH”. H.R.R. and A.C.F. acknowledge ERC Advanced Grant 340442. S.A., S.Caz., E.B. and L.C. acknowledge support from the Spanish Ministry of Economy, under grants AYA2012-32295 and ESP2015-68964-P.

Author information

Authors and Affiliations



R.M. led the project and performed data analysis and interpretation. H.R.R. performed X-shooter data reduction. A.C.F. and W.I. did the theoretical modelling. S.Car., S.A. and E.B. did the reduction and analysis of the MUSE data. S.Caz. and R.G. performed stellar continuum subtraction and continuum analysis. L.C. interpreted the near-infrared spectra. E.O. performed nebular and stellar line identification and diagnostics. F.M., A.M., G.C. and E.S contributed to interpretation. F.B. performed the comparison with Sloan Digital Sky Survey data.

Corresponding author

Correspondence to R. Maiolino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks M. Sarzi, K. Zubovas and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Additional sections of the near-infrared nuclear spectrum.

a, Spectrum around the [P ii] λ = 1.188 μm line. The fitting components have the same colour coding as in Fig. 1b. b, Spectrum around the expected wavelength of [Si vi] at λ = 1.96 μm. The expected locations of the broad and narrow components of the [Si vi] line are marked. A feature corresponding to the expected location of the broadest component is observed, but is much narrower than the width of the same component observed in other nebular lines, and is at the location of an atmospheric absorption dip.

Extended Data Figure 2 Stellar velocity field from the MUSE data.

Although the quality of the MUSE data are not adequate to extract a very reliable stellar velocity field, a and b show the distribution of the stellar continuum around λ = 9,000 Å and the velocity field inferred from the reddest line of the Ca ii triplet, by applying Voronoi binning to the MUSE cube. b also shows the seeing difference between the X-shooter observation and the MUSE observation. c shows a rotation velocity fit to the southern galaxy, by masking the region to the Northeast (around the X-shooter slit), which is probably affected by outflowing stars.

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maiolino, R., Russell, H., Fabian, A. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing