Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Star formation inside a galactic outflow

Abstract

Recent observations have revealed massive galactic molecular outflows1,2,3 that may have the physical conditions (high gas densities4,5,6) required to form stars. Indeed, several recent models predict that such massive outflows may ignite star formation within the outflow itself7,8,9,10,11. This star-formation mode, in which stars form with high radial velocities, could contribute to the morphological evolution of galaxies12, to the evolution in size and velocity dispersion of the spheroidal component of galaxies11,13, and would contribute to the population of high-velocity stars, which could even escape the galaxy13. Such star formation could provide in situ chemical enrichment of the circumgalactic and intergalactic medium (through supernova explosions of young stars on large orbits), and some models also predict it to contribute substantially to the star-formation rate observed in distant galaxies9. Although there exists observational evidence for star formation triggered by outflows or jets into their host galaxy, as a consequence of gas compression, evidence for star formation occurring within galactic outflows is still missing. Here we report spectroscopic observations that unambiguously reveal star formation occurring in a galactic outflow at a redshift of 0.0448. The inferred star-formation rate in the outflow is larger than 15 solar masses per year. Star formation may also be occurring in other galactic outflows, but may have been missed by previous observations owing to the lack of adequate diagnostics14,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral decomposition of the outflow in IRAS F23128−5919.
Figure 2: Diagnostic diagrams.
Figure 3: Ionization parameter.
Figure 4: Kinematics of young stars compared with the gas kinematics.

Similar content being viewed by others

References

  1. Feruglio, C. et al. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155–L158 (2010)

    Article  ADS  Google Scholar 

  2. Sturm, E. et al. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. Astrophys. J. 733, L16–L20 (2011)

    Article  ADS  Google Scholar 

  3. Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21–A55 (2014)

    Article  Google Scholar 

  4. Aalto, S. et al. Detection of HCN, HCO+, and HNC in the Mrk 231 molecular outflow. Dense molecular gas in the AGN wind. Astron. Astrophys. 537, A44–A51 (2012)

    Article  Google Scholar 

  5. Aalto, S. et al. High resolution observations of HCN and HCO+J = 3–2 in the disk and outflow of Mrk 231. Detection of vibrationally excited HCN in the warped nucleus. Astron. Astrophys. 574, A85–A96 (2015)

    Article  Google Scholar 

  6. Sakamoto, K. et al. P Cygni profiles of molecular lines toward Arp 220 Nuclei. Astrophys. J. 700, L104–L108 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Ishibashi, W. & Fabian, A. C. Active galactic nucleus feedback and triggering of star formation in galaxies. Mon. Not. R. Astron. Soc. 427, 2998–3005 (2012)

    Article  ADS  Google Scholar 

  8. Zubovas, K., Nayakshin, S., Sazonov, S. & Sunyaev, R. Outflows of stars due to quasar feedback. Mon. Not. R. Astron. Soc. 431, 793–798 (2013)

    Article  ADS  Google Scholar 

  9. Silk, J. Unleashing positive feedback: linking the rates of star formation, supermassive black hole accretion, and outflows in distant galaxies. Astrophys. J. 772, 112 (2013)

    Article  ADS  Google Scholar 

  10. Zubovas, K. & King, A. R. Galaxy-wide outflows: cold gas and star formation at high speeds. Mon. Not. R. Astron. Soc. 439, 400–406 (2014)

    Article  ADS  Google Scholar 

  11. Ishibashi, W., Fabian, A. C. & Canning, R. E. A. Can AGN feedback-driven star formation explain the size evolution of massive galaxies? Mon. Not. R. Astron. Soc. 431, 2350–2355 (2013)

    Article  ADS  Google Scholar 

  12. Gaibler, V., Khochfar, S., Krause, M. & Silk, J. Jet-induced star formation in gas-rich galaxies. Mon. Not. R. Astron. Soc. 425, 438–449 (2012)

    Article  ADS  Google Scholar 

  13. Dugan, Z., Bryan, S., Gaibler, V., Silk, J. & Haas, M. Stellar signatures of AGN-jet-triggered star formation. Astrophys. J. 796, 113 (2014)

    Article  ADS  Google Scholar 

  14. Leslie, S. K., Rich, J. A., Kewley, L. J. & Dopita, M. A. The energy source and dynamics of infrared luminous galaxy ESO 148–IG002. Mon. Not. R. Astron. Soc. 444, 1842–1853 (2014)

    Article  ADS  Google Scholar 

  15. Bellocchi, E., Arribas, S., Colina, L. & Miralles-Caballero, D. VLT/VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies: 2D kinematic properties. Astron. Astrophys. 557, A59 (2013)

    Article  ADS  Google Scholar 

  16. Brightman, M. & Nandra, K. An XMM-Newton spectral survey of 12 μm selected galaxies—I. X-ray data. Mon. Not. R. Astron. Soc. 413, 1206–1235 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Arribas, S., Colina, L., Bellocchi, E., Maiolino, R. & Villar-Martín, M. Ionized gas outflows and global kinematics of low-z luminous star-forming galaxies. Astron. Astrophys. 568, A14 (2014)

    Article  ADS  Google Scholar 

  18. Cazzoli, S., Arribas, S., Maiolino, R. & Colina, L. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron. Astrophys. 590, A125 (2016)

    Article  ADS  Google Scholar 

  19. Piqueras López, J., Colina, L., Arribas, S., Alonso-Herrero, A. & Bedregal, A. G. VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies. I. Atlas of the 2D gas structure. Astron. Astrophys. 546, A64 (2012)

    Article  ADS  Google Scholar 

  20. Kewley, L. J., Groves, B., Kauffmann, G. & Heckman, T. The host galaxies and classification of active galactic nuclei. Mon. Not. R. Astron. Soc. 372, 961–976 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Pérez-Montero, E. & Contini, T. The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines. Mon. Not. R. Astron. Soc. 398, 949–960 (2009)

    Article  ADS  Google Scholar 

  22. Shapley, A. E. et al. The MOSDEF survey: excitation properties of z ≈ 2.3 star-forming galaxies. Astrophys. J. 801, 88 (2015)

    Article  ADS  Google Scholar 

  23. Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S. & Kewley, L. J. The MAPPINGS III library of fast radiative shock models. Astrophys. J. Suppl. Ser. 178, 20–55 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Colina, L. et al. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective. Astron. Astrophys. 578, A48 (2015)

    Article  Google Scholar 

  25. Oliva, E. et al. NICS-TNG infrared spectroscopy of NGC 1068: the first extragalactic measurement of [P ii] and a new tool to constrain the origin of [Fe ii] line emission in galaxies. Astron. Astrophys. 369, L5–L8 (2001)

    Article  ADS  CAS  Google Scholar 

  26. González Delgado, R. M., Cerviño, M., Martins, L. P., Leitherer, C. & Hauschildt, P. H. Evolutionary stellar population synthesis at high spectral resolution: optical wavelengths. Mon. Not. R. Astron. Soc. 357, 945–960 (2005)

    Article  ADS  Google Scholar 

  27. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Rodríguez-Zaurín, J. et al. VLT-VIMOS integral field spectroscopy of luminous and ultraluminous infrared galaxies. III. The atlas of the stellar and ionized gas distribution. Astron. Astrophys. 527, A60 (2011)

    Article  Google Scholar 

  29. Kauffmann, G. et al. The host galaxies of active galactic nuclei. Astrophys. J. 346, 1055–1077 (2003)

    CAS  Google Scholar 

  30. Diaz, A. I., Castellanos, M., Terlevich, E. & Luisa Garcia-Vargas, M. Chemical abundances and ionizing clusters of Hii regions in the LINER galaxy NGC 4258. Mon. Not. R. Astron. Soc. 318, 462–474 (2000)

    Article  ADS  CAS  Google Scholar 

  31. Cappellari, M. Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions. Mon. Not. R. Astron. Soc. 466, 798–811 (2017)

    Article  ADS  CAS  Google Scholar 

  32. Sanchez-Blazquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105–A119 (2011)

    Article  Google Scholar 

  34. Modigliani, A . et al. The X-shooter pipeline. Proc. SPIE III, 7737, 773728 (2010)

  35. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    Article  ADS  CAS  Google Scholar 

  36. Riffel, R., Rodriguez-Ardila, A. & Pastoriza, M. G. A. 0.8-2.4 μm spectral atlas of active galactic nuclei. Astron. Astrophys. 457, 61–70 (2006)

    Article  ADS  CAS  Google Scholar 

  37. Gerardy, C. & Fesen, R. A. Near-infrared spectroscopy of the Cassiopeia A and Kepler supernova remnants. Astron. J. 121, 2781–2791 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Garcia Lopez, R. et al. IR diagnostics of embedded jets: kinematics and physical characteristics of the HH46-47 jet. Astron. Astrophys. 511, A5–A16 (2010)

    Article  Google Scholar 

  39. Rodríguez-Ardila, A., Prieto, M. A., Portilla, J. G. & Tejeiro, M. The near-infrared coronal line spectrum of 54 nearby active galactic nuclei. Astrophys. J. 743, 100–116 (2011)

    Article  ADS  Google Scholar 

  40. van der Laan, T. P. R., Schinnerer, E., Böker, T. & Armus, L. Near-infrared long-slit spectra of Seyfert galaxies: gas excitation across the central kiloparsec. Astron. Astrophys. 560, A99–A116 (2013)

    Article  ADS  Google Scholar 

  41. Müller-Sánchez, F. et al. Outflows from active galactic nuclei: kinematics of the narrow-line and coronal-line regions in Seyfert galaxies. Astrophys. J. 739, 69–108 (2011)

    Article  ADS  Google Scholar 

  42. Maiolino, R., Krabbe, A., Thatte, N. & Genzel, R. Seyfert activity and nuclear star formation in the Circinus galaxy. Astrophys. J. 493, 650–665 (1998)

    Article  ADS  CAS  Google Scholar 

  43. Marconi, A., van der Werf, P. P., Moorwood, A. F. M. & Oliva, E. Infrared and visible coronal lines in NGC 1068. Astron. Astrophys. 315, 335–342 (1996)

    ADS  CAS  Google Scholar 

  44. Piqueras López, J., Colina, L., Arribas, S., Alonso-Herrero, A. & Bedregal, A. G. VLT-SINFONI integral field spectroscopy of low-z luminous and ultraluminous infrared galaxies. I. Atlas of the 2D gas structure. Astron. Astrophys. 546, A46–A83 (2012)

    Article  Google Scholar 

  45. Thuan, T. X. & Izotov, Y. I. High-ionization emission in metal-deficient blue compact dwarf galaxies. Astrophys. J. 161 (Suppl.), 240–270 (2005)

    Article  ADS  CAS  Google Scholar 

  46. Izotov, Y. I., Thuan, T. X. & Privon, G. The detection of [Ne v] emission in five blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 427, 1229–1237 (2012)

    Article  ADS  CAS  Google Scholar 

  47. Cresci, G. et al. The MAGNUM survey: positive feedback in the nuclear region of NGC 5643 suggested by MUSE. Astron. Astrophys. 582, A63–A71 (2015)

    Article  Google Scholar 

  48. Carniani, S. et al. Fast outflows and star formation quenching in quasar host galaxies. Astron. Astrophys. 591, A28–A36 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

R.M., S.Car. and F.B. acknowledge support by the Science and Technology Facilities Council (STFC). R.M. acknowledges ERC Advanced Grant 695671 “QUENCH”. H.R.R. and A.C.F. acknowledge ERC Advanced Grant 340442. S.A., S.Caz., E.B. and L.C. acknowledge support from the Spanish Ministry of Economy, under grants AYA2012-32295 and ESP2015-68964-P.

Author information

Authors and Affiliations

Authors

Contributions

R.M. led the project and performed data analysis and interpretation. H.R.R. performed X-shooter data reduction. A.C.F. and W.I. did the theoretical modelling. S.Car., S.A. and E.B. did the reduction and analysis of the MUSE data. S.Caz. and R.G. performed stellar continuum subtraction and continuum analysis. L.C. interpreted the near-infrared spectra. E.O. performed nebular and stellar line identification and diagnostics. F.M., A.M., G.C. and E.S contributed to interpretation. F.B. performed the comparison with Sloan Digital Sky Survey data.

Corresponding author

Correspondence to R. Maiolino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks M. Sarzi, K. Zubovas and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Additional sections of the near-infrared nuclear spectrum.

a, Spectrum around the [P ii] λ = 1.188 μm line. The fitting components have the same colour coding as in Fig. 1b. b, Spectrum around the expected wavelength of [Si vi] at λ = 1.96 μm. The expected locations of the broad and narrow components of the [Si vi] line are marked. A feature corresponding to the expected location of the broadest component is observed, but is much narrower than the width of the same component observed in other nebular lines, and is at the location of an atmospheric absorption dip.

Extended Data Figure 2 Stellar velocity field from the MUSE data.

Although the quality of the MUSE data are not adequate to extract a very reliable stellar velocity field, a and b show the distribution of the stellar continuum around λ = 9,000 Å and the velocity field inferred from the reddest line of the Ca ii triplet, by applying Voronoi binning to the MUSE cube. b also shows the seeing difference between the X-shooter observation and the MUSE observation. c shows a rotation velocity fit to the southern galaxy, by masking the region to the Northeast (around the X-shooter slit), which is probably affected by outflowing stars.

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiolino, R., Russell, H., Fabian, A. et al. Star formation inside a galactic outflow. Nature 544, 202–206 (2017). https://doi.org/10.1038/nature21677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21677

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing