Abstract
Supersolidity combines superfluid flow with long-range spatial periodicity of solids1, two properties that are often mutually exclusive. The original discussion of quantum crystals2 and supersolidity focused on solid 4He and triggered extensive experimental efforts3,4 that, instead of supersolidity, revealed exotic phenomena including quantum plasticity and mass supertransport4. The concept of supersolidity was then generalized from quantum crystals to other superfluid systems that break continuous translational symmetry. Bose–Einstein condensates with spin–orbit coupling are predicted to possess a stripe phase5,6,7 with supersolid properties8,9. Despite several recent studies of the miscibility of the spin components of such a condensate10,11,12, the presence of stripes has not been detected. Here we observe the predicted density modulation of this stripe phase using Bragg reflection (which provides evidence for spontaneous long-range order in one direction) while maintaining a sharp momentum distribution (the hallmark of superfluid Bose–Einstein condensates). Our work thus establishes a system with continuous symmetry-breaking properties, associated collective excitations and superfluid behaviour.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.




References
- 1
Boninsegni, M. & Prokof’ev, N. V. Supersolids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012)
- 2
Chester, G. V. Speculations on Bose–Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970)
- 3
Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004)
- 4
Kuklov, A. B., Pollet, L., Prokof’ev, N. V. & Svistunov, B. V. Quantum plasticity and supersolid response in helium-4. Phys. Rev. B 90, 184508 (2014)
- 5
Li, Y., Pitaevskii, L. P. & Stringari, S. Quantum tricriticality and phase transitions in spin-orbit-coupled Bose–Einstein condensates. Phys. Rev. Lett. 108, 225301 (2012)
- 6
Ho, T.-L. & Zhang, S. Bose–Einstein condensates with spin-orbit interaction. Phys. Rev. Lett. 107, 150403 (2011)
- 7
Wang, C., Gao, C., Jian, C.-M. & Zhai, H. Spin-orbit coupled spinor Bose–Einstein condensates. Phys. Rev. Lett. 105, 160403 (2010)
- 8
Han, W., Juzeliu¯nas, G., Zhang, W. & Liu, W.-M. Supersolid with nontrivial topological spin textures in spin-orbit-coupled Bose gases. Phys. Rev. A 91, 013607 (2015)
- 9
Li, Y., Martone, G. I., Pitaevskii, L. P. & Stringari, S. Superstripes and the excitation spectrum of a spin-orbit-coupled Bose–Einstein condensate. Phys. Rev. Lett. 110, 235302 (2013)
- 10
Lin, Y.-J., Jiménez-García, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011)
- 11
Ji, S.-C. et al. Softening of roton and phonon modes in a Bose–Einstein condensate with spin-orbit coupling. Phys. Rev. Lett. 114, 105301 (2015)
- 12
Ji, S.-C. et al. Experimental determination of the finite-temperature phase diagram of a spin–orbit coupled Bose gas. Nat. Phys. 10, 314–320 (2014)
- 13
Giovanazzi, S., O’Dell, D. & Kurizki, G. Density modulations of Bose–Einstein condensates via laser-induced interactions. Phys. Rev. Lett. 88, 130402 (2002)
- 14
Henkel, N., Nath, R. & Pohl, T. Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010)
- 15
Ostermann, S., Piazza, F. & Ritsch, H. Spontaneous crystallization of light and ultracold atoms. Phys. Rev. X 6, 021026 (2016)
- 16
Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005)
- 17
Léonard, J. et al. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Naturehttp://dx.doi.org/10.1038/nature21067 (2017)
- 18
Bulgac, A. & Forbes, M. M. Unitary Fermi supersolid: the Larkin–Ovchinnikov phase. Phys. Rev. Lett. 101, 215301 (2008)
- 19
Chen, Y., Ye, J. & Tian, G. Classification of a supersolid: trial wavefunctions, symmetry breaking and excitation spectra. J. Low Temp. Phys. 169, 149–168 (2012)
- 20
Stanescu, T. D., Anderson, B. & Galitski, V. Spin-orbit coupled Bose–Einstein condensates. Phys. Rev. A 78, 023616 (2008)
- 21
Miyake, H. et al. Bragg scattering as a probe of atomic wave functions and quantum phase transitions in optical lattices. Phys. Rev. Lett. 107, 175302 (2011)
- 22
Martone, G. I. Visibility and stability of superstripes in a spin-orbit-coupled Bose–Einstein condensate. Eur. Phys. J. Spec. Top. 224, 553–563 (2015)
- 23
Burdick, N. Q., Tang, Y. & Lev, B. Long-lived spin-orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016)
- 24
Cheuk, L. W. et al. Spin-injection spectroscopy of a spin-orbit coupled Fermi gas. Phys. Rev. Lett. 109, 095302 (2012)
- 25
Wang, P. et al. Spin-orbit coupled degenerate Fermi gases. Phys. Rev. Lett. 109, 095301 (2012)
- 26
Song, B. et al. Spin-orbit coupled two-electron Fermi gases of ytterbium atoms. Phys. Rev. A 94, 061604(R) (2016)
- 27
Li, J. et al. Spin-orbit coupling and spin textures in optical superlattices. Phys. Rev. Lett. 117, 185301 (2016)
- 28
Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010)
- 29
Sun, Q., Wen, L., Liu, W.-M., Juzeliu¯nas, G. & Ji, A.-C. Tunneling-assisted spin-orbit coupling in bilayer Bose–Einstein condensates. Phys. Rev. A 91, 033619 (2015)
- 30
Zhai, H. Degenerate quantum gases with spin–orbit coupling. Rep. Prog. Phys. 78, 026001 (2015)
Acknowledgements
We thank S. Stringari for discussions and W. C. Burton for reading the manuscript. We acknowledge support from the NSF through the Center for Ultracold Atoms and from award 1506369, from ARO-MURI Non-equilibrium Many-body Dynamics (grant W911NF-14-1-0003) and from AFOSR-MURI Quantum Phases of Matter (grant FA9550-14-1- 0035).
Author information
Affiliations
Contributions
J.-R.L., W.H., J.L., B.S., S.B., F.C.T. and A.O.J. contributed to the building of the experiment. J.-R.L. led the experimental efforts. J.L. led the data analysis and simulations. W.H., J.-R.L. and W.K. conceived the experiment. All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks K. Hazzard and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Li, JR., Lee, J., Huang, W. et al. A stripe phase with supersolid properties in spin–orbit-coupled Bose–Einstein condensates. Nature 543, 91–94 (2017). https://doi.org/10.1038/nature21431
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Vortex-lattice formation in a spin–orbit coupled rotating spin-1 condensate
Journal of Physics: Condensed Matter (2021)
-
FORTRESS: FORTRAN programs for solving coupled Gross–Pitaevskii equations for spin–orbit coupled spin-1 Bose–Einstein condensate
Computer Physics Communications (2021)
-
New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids
Reports on Progress in Physics (2021)
-
Phase Diagrams of Periodically Driven Spin–Orbit Coupled 87 Rb and 23 Na Bose–Einstein Condensates
Annalen der Physik (2021)
-
Supersolidity of cnoidal waves in an ultracold Bose gas
Physical Review Research (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.