Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using coherence to enhance function in chemical and biophysical systems

Abstract

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherence phenomena.
Figure 2: Coherences revealed by experiment.
Figure 3: Vibrations change the picture.
Figure 4: Long-range excitons.
Figure 5: Coherent motion in transition metal complexes.

References

  1. Wolf, P. E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985)

    CAS  ADS  PubMed  Google Scholar 

  2. Aeschlimann, M. et al. Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nat. Phys. 9, 663–668 (2015)

    CAS  Google Scholar 

  3. Wiersma, D. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008)

    CAS  Google Scholar 

  4. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999)

    CAS  ADS  Google Scholar 

  5. John, S. Localization of light. Phys. Today 44, 32–40 (1991)

    ADS  Google Scholar 

  6. Ambrosetti, A., Ferri, N., DiStasio, R. A., Jr & Tkatchenko, A. Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. Science 351, 1171–1176 (2016)

    CAS  ADS  PubMed  Google Scholar 

  7. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007). Coherence in a photosynthetic protein is detected using two-dimensional electronic spectroscopy

    CAS  ADS  PubMed  Google Scholar 

  8. Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009)

    CAS  ADS  PubMed  Google Scholar 

  9. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010)

    CAS  ADS  PubMed  Google Scholar 

  10. Panitchayangkoon, G . et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010)

    CAS  ADS  PubMed  Google Scholar 

  11. Rozzi, C. A. et al. Quantum coherence controls the charge separation in a prototypical artificial light-harvesting system. Nat. Commun. 4, 1602 (2013)

    ADS  PubMed  Google Scholar 

  12. Walschaers, M., Schlawin, F., Wellens, T. & Buchleitner, A. Quantum transport on disordered and noisy networks: an interplay of structural complexity and uncertainty. Annu. Rev. Condens. Matter Phys. 7, 223–248 (2016)

    ADS  Google Scholar 

  13. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    CAS  ADS  PubMed  Google Scholar 

  14. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000)

    CAS  MATH  ADS  PubMed  Google Scholar 

  15. Norbeck, J. & Gallup, G. Valence-bond calculation of the electronic structure of benzene. J. Am. Chem. Soc. 96, 3386–3393 (1974)

    CAS  Google Scholar 

  16. Naleway, C. A., Curtiss, L. A. & Miller, J. R. Superexchange-pathway model for long-distance electronic couplings. J. Phys. Chem. 95, 8434–8437 (1991)

    CAS  Google Scholar 

  17. Albinsson, B. & Martensson, J. Long-range electron and excitation energy transfer in donor-bridge-acceptor systems. J. Photochem. Photobiol. Photochem. Rev. 9, 138–155 (2008)

    CAS  Google Scholar 

  18. Winkler, J. R. & Gray, H. B. Long-range electron tunneling. J. Am. Chem. Soc. 136, 2930–2939 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y ., Liu, C ., Balaeff, A ., Skourtis, S. S. & Beratan, D. N. Biological charge transfer via flickering resonance. Proc. Natl Acad. Sci. USA 111, 10049–10054 (2014)

    CAS  ADS  PubMed  Google Scholar 

  20. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003)

    CAS  ADS  PubMed  Google Scholar 

  21. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8, 399–410 (2013)

    CAS  ADS  PubMed  Google Scholar 

  22. Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nat. Nanotechnol. 7, 305–309 (2012). Electrical transport junctions reveal quantum interference through single molecules

    ADS  PubMed  Google Scholar 

  23. Manrique, D. Z. et al. A quantum circuit rule for interference effects in single-molecule electrical junctions. Nat. Commun. 6, 6389 (2015)

    CAS  ADS  PubMed  Google Scholar 

  24. Solomon, G. C., Herrmann, C. & Ratner, M. A. Molecular electronic junction transport: some pathways and some ideas. Top. Curr. Chem. 313, 1–38 (2012)

    CAS  PubMed  Google Scholar 

  25. Nitzan, A. Electron transmission through molecules and molecular interfaces. Annu. Rev. Phys. Chem. 52, 681–750 (2001)

    CAS  ADS  PubMed  Google Scholar 

  26. Valkenier, H. et al. Cross-conjugation and quantum interference: a general correlation? Phys. Chem. Chem. Phys. 16, 653–662 (2014)

    CAS  PubMed  Google Scholar 

  27. Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum transport. New J. Phys. 11, 033003 (2009)

    ADS  Google Scholar 

  28. Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015)

    CAS  ADS  PubMed  Google Scholar 

  29. Heller, E. J. A semiclassical way to molecular spectroscopy. Acc. Chem. Res. 14, 368–375 (1981)

    CAS  Google Scholar 

  30. Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 3200–3205 (1977)

    CAS  ADS  PubMed  Google Scholar 

  31. James, D., Kwiat, P., Munro, P. & White, A. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    ADS  Google Scholar 

  32. Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011). Weak measurement is used to measure the transverse spatial wavefunction of a single photon

    CAS  PubMed  Google Scholar 

  33. Lundeen, J. S. & Bamber, C. Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    ADS  PubMed  Google Scholar 

  34. Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010)

    CAS  PubMed  Google Scholar 

  35. Reimers, J. R., McKemmish, L. K., McKenzie, R. H. & Hush, N. S. Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections. Phys. Chem. Chem. Phys. 17, 24641–24665 (2015)

    CAS  PubMed  Google Scholar 

  36. Köuppel, H., Domcke, W. & Cederbaum, L. S. Multimode molecular dynamics beyond the Born-Oppenheimer approximation. Adv. Chem. Phys. 57, 59–246 (1984)

    Google Scholar 

  37. Schröter, M. et al. Exciton–vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys. Rep. 567, 1–78 (2015)

    MathSciNet  ADS  Google Scholar 

  38. Christensson, N., Kauffmann, H. F., Pullerits, T. & Mancˇal, T. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbara, P. F., Walker, G. C. & Smith, T. P. Vibrational modes and the dynamic solvent effect in electron and proton transfer. Science 256, 975–981 (1992)

    CAS  ADS  PubMed  Google Scholar 

  40. Tiwari, V ., Peters, W. K & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013)

    CAS  ADS  PubMed  Google Scholar 

  41. Plenio, M. B., Almeida, J. & Huelga, S. F. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139, 235102 (2013)

    CAS  ADS  PubMed  Google Scholar 

  42. Novelli, F. et al. Vibronic resonances facilitate excited-state coherence in light-harvesting proteins at room temperature. J. Phys. Chem. Lett. 6, 4573–4580 (2015)

    CAS  PubMed  Google Scholar 

  43. Fujihashi, Y., Fleming, G. R. & Ishizaki, A. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. J. Chem. Phys. 142, 212403 (2015)

    ADS  PubMed  Google Scholar 

  44. Chin, A. W. et al. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9, 113–118 (2012)

    Google Scholar 

  45. O’Reilly, E. J. & Olaya-Castro, A. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014).Theoretical analysis suggests that vibronic coherence can be rigorously quantum mechanical

    ADS  PubMed  PubMed Central  Google Scholar 

  46. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuller, F. D. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014)

    CAS  PubMed  Google Scholar 

  48. Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014)

    CAS  ADS  PubMed  Google Scholar 

  49. Walschaers, M., Diaz, J. F., Mulet, R. & Buchleitner, A. Optimally designed quantum transport across disordered networks. Phys. Rev. Lett. 111, 180601 (2013)

    ADS  PubMed  Google Scholar 

  50. Yamagata, H. & Spano, F. C. Vibronic coupling in quantum wires: applications to polydiacetylene. J. Chem. Phys. 135, 054906 (2011)

    CAS  ADS  PubMed  Google Scholar 

  51. Spano, F. C. & Yamagata, H. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J. Phys. Chem. B 115, 5133–5143 (2011). Theoretical modelling shows how photoluminescence measurements can gauge delocalization of excitons

    CAS  PubMed  Google Scholar 

  52. Dubin, F. et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat. Phys. 2, 32–35 (2006)

    CAS  Google Scholar 

  53. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011)

    CAS  PubMed  Google Scholar 

  54. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nat. Mater. 5, 683–696 (2006)

    CAS  ADS  PubMed  Google Scholar 

  55. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4, 389–395 (2012)

    CAS  PubMed  Google Scholar 

  56. Brédas, J. L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2016)

    ADS  PubMed  Google Scholar 

  57. Wu, C., Malinin, S., Tretiak, S. & Chernyak, V. Exciton scattering and localization in branched dendrimeric structures. Nat. Phys. 2, 631–635 (2006)

    CAS  Google Scholar 

  58. Scholak, T., Mintert, F., Wellens, T. & Buchleitner, A. Transport and entanglement. Semicond. Semimet. 83, 1–38 (2010)

    Google Scholar 

  59. Yong, C. et al. Ultrafast delocalization of excitation in synthetic light-harvesting nanorings. Chem. Sci. 6, 181–189 (2015)

    CAS  ADS  PubMed  Google Scholar 

  60. Sung, J., Kim, P., Fimmel, B., Würthner, F. & Kim, D. Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides. Nat. Commun. 6, 8646 (2015)

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  61. Aggarwal, A. V. et al. Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles. Nat. Chem. 5, 964–970 (2013)

    CAS  PubMed  Google Scholar 

  62. van Oijen, A. M., Ketelaars, M., Kohler, J., Aartsma, T. J. & Schmidt, J. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285, 400–402 (1999)

    CAS  PubMed  Google Scholar 

  63. Monshouwer, R., Abrahamsson, M., van Mourik, F. & van Grondelle, R. Superradience and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248 (1997). The shortened radiative rate of fluorescence from a photosynthetic complex shows robust exciton delocalization length

    CAS  Google Scholar 

  64. Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2016)

    PubMed  Google Scholar 

  65. Scholes, G. D. & Fleming, G. R. On the mechanism of light-harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B 104, 1854–1868 (2000). A theory explaining how energy transfer is accelerated by exciton states is reported

    CAS  Google Scholar 

  66. Sumi, H. Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B 103, 252–260 (1999). A theory explaining how energy transfer is accelerated by exciton states is reported

    CAS  Google Scholar 

  67. Huh, J. et al. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J. Am. Chem. Soc. 136, 2048–2057 (2014)

    CAS  PubMed  Google Scholar 

  68. Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009)

    ADS  PubMed  Google Scholar 

  69. Lee, M. K., Huo, P. & Coker, D. F. Semiclassical path integral dynamics: photosynthetic energy transfer with realistic environment interactions. Annu. Rev. Phys. Chem. 67, 639–668 (2016)

    CAS  ADS  PubMed  Google Scholar 

  70. Ishizaki, A. & Fleming, G. R. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys. 3, 333–361 (2012)

    CAS  Google Scholar 

  71. Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015)

    CAS  ADS  PubMed  Google Scholar 

  72. Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010)

    CAS  PubMed  Google Scholar 

  73. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003)

    CAS  ADS  PubMed  Google Scholar 

  74. Mukamel, S. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000)

    CAS  ADS  PubMed  Google Scholar 

  75. Mukamel, S. et al. Coherent multidimensional optical probes for electron correlations and exciton dynamics: from NMR to X-rays. Acc. Chem. Res. 42, 553–562 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hayes, D. & Engel, G. S. Extracting the excitonic Hamiltonian of the Fenna-Matthews-Olson complex using three-dimensional third-order electronic spectroscopy. Biophys. J. 100, 2043–2052 (2011)

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  77. Snaith, H. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013)

    CAS  Google Scholar 

  78. Ishizaki, A & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009)

    ADS  PubMed  Google Scholar 

  79. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015)

    CAS  PubMed  Google Scholar 

  80. Frost, J. M. & Walsh, A. What is moving in hybrid halide perovskite solar cells? Acc. Chem. Res. 49, 528–535 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016)

    CAS  ADS  PubMed  Google Scholar 

  82. Liu, C. et al. Engineering nanometre-scale coherence in soft matter. Nat. Chem. 8, 941–945 (2016)

    CAS  PubMed  Google Scholar 

  83. Bersuker, I. B. Modern aspects of the Jahn-Teller effect theory and applications to molecular problems. Chem. Rev. 101, 1067–1114 (2001)

    CAS  PubMed  Google Scholar 

  84. Iwamura, M., Takeuchi, S. & Tahara, T. Ultrafast excited-state dynamics of copper(I) complexes. Acc. Chem. Res. 48, 782–791 (2015)

    CAS  PubMed  Google Scholar 

  85. Cho, S. et al. Coherence in metal-metal-to-ligand-charge-transfer transitions of a dimetallic complex investigated by ultrafast transient absorption anisotropy. J. Phys. Chem. A 115, 3990–3996 (2011)

    CAS  PubMed  Google Scholar 

  86. Schrauben, J., Dillman, K., Beck, W. & McCusker, J. Vibrational coherence in the excited state dynamics of Cr(acac)(3): probing the reaction coordinate for ultrafast intersystem crossing. Chem. Sci. 1, 405–410 (2010)

    CAS  Google Scholar 

  87. Gorczak, N. et al. Computational design of donor-bridge-acceptor systems exhibiting pronounced quantum interference effects. Phys. Chem. Chem. Phys. 18, 6773–6779 (2016)

    CAS  PubMed  Google Scholar 

  88. Nitzan, A., Jortner, J., Wilkie, J., Burin, A. & Ratner, M. Tunneling time for electron transfer reactions. J. Phys. Chem. B 104, 5661–5665 (2000)

    CAS  Google Scholar 

  89. Bittner, E. R. & Silva, C. Noise-induced quantum coherence drives photo-carrier generation dynamics at polymeric semiconductor heterojunctions. Nat. Commun. 5, 3119 (2014)

    ADS  PubMed  Google Scholar 

  90. Hoyer, S., Ishizaki, A. & Whaley, K. B. Spatial propagation of excitonic coherence enables ratcheted energy transfer. Phys. Rev. E 86, 041911 (2012)

    ADS  Google Scholar 

  91. Dittrich, T., Ketzmerick, R., Otto, M. & Schanz, H. Classical and quantum transport in deterministic Hamiltonian ratchets. Ann. Phys. 9, 755–763 (2000)

    MATH  Google Scholar 

  92. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012)

    CAS  ADS  PubMed  Google Scholar 

  93. Akimov, A. V., Asahi, R., Jinnouchi, R. & Prezhdo, O. V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc. 137, 11517–11525 (2015)

    CAS  PubMed  Google Scholar 

  94. Zusman, L. & Beratan, D. Two-electron transfer reactions in polar solvents. J. Chem. Phys. 105, 165–176 (1996)

    CAS  ADS  Google Scholar 

  95. Houk, K., González, J. & Li, Y. Pericyclic reaction transition states: passions and punctilios, 1935–1995. Acc. Chem. Res. 28, 81–90 (1995)

    CAS  Google Scholar 

  96. Horn, B., Herek, J. & Zewail, A. Retro-Diels-Alder femtosecond reaction dynamics. J. Am. Chem. Soc. 118, 8755–8756 (1996)

    CAS  Google Scholar 

  97. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012)

    CAS  PubMed  Google Scholar 

  98. Huynh, M. H. & Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 107, 5004–5064 (2007)

    CAS  PubMed  Google Scholar 

  99. Rhile, I. J. et al. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols. J. Am. Chem. Soc. 128, 6075–6088 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Hammes-Schiffer, S. & Soudackov, A. V. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112, 14108–14123 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Calegari, F. et al. Charge migration induced by attosecond pulses in bio-relevant molecules. J. Phys. At. Mol. Opt. Phys. 49, 142001 (2016)

    ADS  Google Scholar 

  102. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015)

    CAS  ADS  PubMed  Google Scholar 

  103. Bredtmann, T., Chelkowski, S. & Bandrauk, A. Monitoring attosecond dynamics of coherent electron-nuclear wave packets by molecular high-order harmonic generation. Phys. Rev. A 84, 021401 (2011)

    ADS  Google Scholar 

  104. Capano, G. et al. Probing wavepacket dynamics using ultrafast x-ray spectroscopy. J. Phys. At. Mol. Opt. Phys. 48, 214001 (2015)

    ADS  Google Scholar 

  105. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64, 101–127 (2013)

    CAS  ADS  PubMed  Google Scholar 

  106. Rafiq, S. & Scholes, G. D. Slow intramolecular vibrational relaxation leads to long-lived excited-state wavepackets. J. Phys. Chem. A 120, 6792–6799 (2016)

    CAS  PubMed  Google Scholar 

  107. Jacobs, K. & Steck, D. A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47, 279–303 (2006)

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy. We thank M. Spitler and J. Krause for leading the organization of the Basic Energy Sciences workshop on ‘Optimal Coherence in Chemical and Biophysical Dynamics’. G.D.S. thanks E. Sorensen for explaining electrophilic aromatic substitution reactions. We thank E. D. Foszcz for providing Fig. 5c. We thank L. T. Rumbles for improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.X.C. proposed the workshop to the Department of Energy Council for Chemical and Biochemical Sciences. G.D.S. and G.R.F. wrote the paper with substantive input from all co-authors. All the authors formulated and discussed the content of the paper and commented on the manuscript.

Corresponding authors

Correspondence to Gregory D. Scholes or Graham R. Fleming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks C. Lienau, A. Troisi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scholes, G., Fleming, G., Chen, L. et al. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017). https://doi.org/10.1038/nature21425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21425

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing