Functional materials discovery using energy–structure–function maps


Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy–structure–function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Candidate building blocks for porous solids.
Figure 2: From structure prediction to energy–structure–function (ESF) maps.
Figure 3: ESF maps for T2.
Figure 4: Predicted and experimental structures and gas adsorption isotherms for polymorphs of T2.
Figure 5: Crystal structure stability and solvent stabilization.
Figure 6: Predicted and experimental structures and properties for


  1. 1

    Lewis, D. W., Willock, D. J., Catlow, C. R. A., Thomas, J. M. & Hutchings, G. J. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Oganov, A. R. et al. Ionic high-pressure form of elemental boron. Nature 457, 863–867 (2009)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Ceder, G. et al. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392, 694–696 (1998)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Marleny Rodriguez-Albelo, L. et al. Zeolitic polyoxometalate-based metal−organic frameworks (Z-POMOFs): computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 131, 16078–16087 (2009)

    CAS  Article  Google Scholar 

  5. 5

    Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the World Community Grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Dyer, M. S. et al. Computationally assisted identification of functional inorganic materials. Science 340, 847–852 (2013)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190–1199 (2015)

    CAS  Article  Google Scholar 

  8. 8

    Ma, Y. et al. Transparent dense sodium. Nature 458, 182–185 (2009)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Sharma, V. et al. Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Wilmer, C. E. et al. Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012)

    CAS  Article  Google Scholar 

  11. 11

    Jansen, M. & Schön, J. C. “Design” in chemical synthesis—an illusion? Angew. Chem. Int. Ed. 45, 3406–3412 (2006)

    CAS  Article  Google Scholar 

  12. 12

    Cruz-Cabeza, A. J., Reutzel-Edens, S. M. & Bernstein, J. Facts and fictions about polymorphism. Chem. Soc. Rev. 44, 8619–8635 (2015)

    CAS  Article  Google Scholar 

  13. 13

    Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005)

    ADS  Article  Google Scholar 

  15. 15

    Woodley, S. M. & Catlow, R. Crystal structure prediction from first principles. Nat. Mater. 7, 937–946 (2008)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Price, S. L. Predicting crystal structures of organic compounds. Chem. Soc. Rev. 43, 2098–2111 (2014)

    CAS  Article  Google Scholar 

  17. 17

    Mastalerz, M. Permanent porous materials from discrete organic molecules—towards ultra-high surface areas. Chem. Eur. J. 18, 10082–10091 (2012)

    CAS  Article  Google Scholar 

  18. 18

    Kitaigorodskii, A. I. The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr. 18, 585–590 (1965)

    CAS  Article  Google Scholar 

  19. 19

    Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011)

    CAS  Article  Google Scholar 

  20. 20

    Pyzer-Knapp, E. O. et al. Predicted crystal energy landscapes of porous organic cages. Chem. Sci. 5, 2235–2245 (2014)

    CAS  Article  Google Scholar 

  21. 21

    Evans, J. D. et al. Computational identification of organic porous molecular crystals. CrystEngComm 18, 4133–4141 (2016)

    CAS  Article  Google Scholar 

  22. 22

    Mastalerz, M. & Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem. Int. Ed. 51, 5252–5255 (2012)

    CAS  Article  Google Scholar 

  23. 23

    Wang, H. et al. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation. J. Am. Chem. Soc. 137, 9963–9970 (2015)

    CAS  Article  Google Scholar 

  24. 24

    Simard, M., Su, D. & Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 113, 4696–4698 (1991)

    CAS  Article  Google Scholar 

  25. 25

    Kohl, B., Rominger, F. & Mastalerz, M. Crystal structures of a molecule designed not to pack tightly. Chem. Eur. J. 21, 17308–17313 (2015)

    CAS  Article  Google Scholar 

  26. 26

    Zonta, C., De Lucchi, O., Linden, A. & Lutz, M. Synthesis and structure of D3h-symmetric triptycene trimaleimide. Molecules 15, 226–232 (2010)

    CAS  Article  Google Scholar 

  27. 27

    Case, D. H., Campbell, J. E., Bygrave, P. J. & Day, G. M. Convergence properties of crystal structure prediction by quasi-random sampling. J. Chem. Theory Comput. 12, 910–924 (2016)

    CAS  Article  Google Scholar 

  28. 28

    Cruz-Cabeza, A. J., Day, G. M. & Jones, W. Predicting inclusion behaviour and framework structures in organic crystals. Chem. Eur. J. 15, 13033–13040 (2009)

    CAS  Article  Google Scholar 

  29. 29

    Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metal–organic frameworks. J. Am. Chem. Soc. 136, 5271–5274 (2014)

    Article  Google Scholar 

  30. 30

    Mason, J. A. et al. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Gómez-Gualdrón, D. A. et al. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016)

    Article  Google Scholar 

  32. 32

    Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914–12915 (2007)

    Article  Google Scholar 

  33. 33

    Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014)

    CAS  Article  Google Scholar 

  34. 34

    Materials Studio v.6.1.200, (Accelrys Software Inc., 2012)

  35. 35

    Frisch, M. J. et al. Gaussian 09 Revision D.01 (Gaussian Inc., 2013)

  36. 36

    Price, S. L. et al. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials. Phys. Chem. Chem. Phys. 12, 8478–8490 (2010)

    CAS  Article  Google Scholar 

  37. 37

    Pyzer-Knapp, E. O., Thompson, H. P. G. & Day, G. M. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics. Acta Crystallogr. B72, 477–487 (2016)

    Google Scholar 

  38. 38

    Chisholm, J. A. & Motherwell, S. COMPACK: a program for identifying crystal structure similarity using distances. J. Appl. Cryst. 38, 228–231 (2005)

    Article  Google Scholar 

  39. 39

    Willems, T. F., Rycroft, C., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012)

    CAS  Article  Google Scholar 

  40. 40

    Sesé, L. M. Feynman-Hibbs potentials and path integrals for quantum Lennard-Jones systems: theory and Monte Carlo simulations. Mol. Phys. 85, 931–947 (1995)

    ADS  Article  Google Scholar 

  41. 41

    Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D65, 148–155 (2009)

    Google Scholar 

  42. 42

    Macrae, C. F. et al. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41, 466–470 (2008)

    CAS  Article  Google Scholar 

  43. 43

    Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016)

    CAS  Article  Google Scholar 

  44. 44

    Todorov, I. T., Smith, W., Trachenko, K. & Dove, M. T. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem. 16, 1911–1918 (2006)

    CAS  Article  Google Scholar 

  45. 45

    Yong, C. W. Descriptions and implementations of DL_F notation: a natural chemical expression system of atom types for molecular simulations. J. Chem. Inf. Model. 56, 1405–1409 (2016)

    CAS  Article  Google Scholar 

  46. 46

    Winn, P. J., Ferenczy, G. G. & Reynolds, C. A. Towards improved force fields. 1. Multipole-derived atomic charges. J. Phys. Chem. A 101, 5437–5445 (1997)

    CAS  Article  Google Scholar 

  47. 47

    Ferenczy, G. G., Winn, P. J. & Reynolds, C. A. Towards improved force fields. 2. Effective distributed multipoles. J. Phys. Chem. A 101, 5446–5455 (1997)

    CAS  Article  Google Scholar 

  48. 48

    Martin, M. G. MCCCS Towhee: a tool for Monte Carlo molecular simulation. Mol. Simul. 39, 1212–1222 (2013)

    CAS  Article  Google Scholar 

Download references


We acknowledge the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC through grant agreement numbers 321156 (ERC-AG-PE5-ROBOT) and 307358 (ERC-stG-2012-ANGLE), and EPSRC (grants EP/N004884/1, EP/K018396/1 and EP/K018132/1) for funding. This work made use of the facilities of N8 HPC Centre of Excellence, provided and funded by the N8 consortium and EPSRC (grant number EP/K000225/1). T.H. thanks the Royal Society for a University Research Fellowship. We thank Diamond Light Source for access to beamlines I19 (MT8728) and I11 (EE12336). We thank the Advanced Light Source, supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231, and S. J. Teat and K. J. Gagnon for their assistance. We acknowledge the ARCHER UK National Supercomputing Service via the UK’s HEC Materials Chemistry Consortium membership and a Programme Grant, which are funded by EPSRC (grants EP/L000202 and EP/N004884), and use of the IRIDIS High Performance Computing Facility at the University of Southampton.

Author information




A.P. performed the CSPs. T.K. synthesized T2 and isolated T2-γ. L.C. carried out the methane and hydrogen capacity simulations, the Qst calculations, the hydrocarbon separation simulations, the adsorption isotherm simulations and the IAST calculations. D.H. analysed the pore geometries for the predicted structures, produced most of the ESF maps and wrote scripts to analyse the data. S.Y.C. and M.A.L. isolated T2-β and T2-δ and carried out the PXRD experiments. S.Y.C. analysed the hydrogen-bonding patterns for T2. B.J.S. synthesized T1, T2 and T2E. B.B. developed the initial synthetic route to T2E. D.P.M. carried out the molecular dynamics stability and solvent stabilization calculations. M.A.L., C.J.S. and A.S. collected single-crystal X-ray diffraction data and solved the structures; M.A.L., S.Y.C., A.S. and B.J.S. performed experiments on the stability of various phases. M.A.L. isolated T2E-α, solved its crystal structure and led the single-crystal diffraction work. T.K., C.M.K. and B.J.S. carried out crystallization and sublimation studies for T1 and T2. T.K., R.C., M.A.L., A.S. and T.H. collected and interpreted the gas sorption isotherms. A.I.C. and G.M.D. conceived the project and the concept of ESF maps, and led the writing of the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to Graeme M. Day.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Catlow and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Text and Data, Supplementary Figures 1-89, Supplementary Tables 1-12 and additional references. (PDF 15898 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pulido, A., Chen, L., Kaczorowski, T. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing