Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics


The cartilage and skin of animals, which are made up of more than fifty per cent water, are rather stiff (having elastic moduli of up to 100 megapascals)1,2 as well as tough and hard to break (with fracture energies of up to 9,000 joules per square metre)3,4. Such features make these biological materials mechanically superior to existing synthetic hydrogels. Lately, progress has been made in synthesizing tough hydrogels, with double-network hydrogels achieving the toughness of skin5 and inorganic–organic composites showing even better performance6. However, these materials owe their toughness to high stretchability; in terms of stiffness, synthetic hydrogels cannot compete with their natural counterparts, with the best examples having elastic moduli of just 10 megapascals or less7,8,9,10,11. Previously, we described the enzyme-induced precipitation and crystallization of hydrogels containing calcium carbonate, but the resulting materials were brittle12. Here we report the enzyme-induced formation of amorphous calcium phosphate nanostructures that are homogenously distributed within polymer hydrogels. Our best materials have fracture energies of 1,300 joules per square metre even in their fully water-swollen state—a value superior to that of most known water-swollen synthetic materials. We are also able to modulate their stiffness up to 440 megapascals, well beyond that of cartilage and skin. Furthermore, the highly filled composite materials can be designed to be optically transparent and to retain most of their stretchability even when notched. We show that percolation drives the mechanical properties, particularly the high stiffness, of our uniformly mineralized hydrogels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Enzyme-induced bulk calcification of different polymer networks.
Figure 2: Distribution of enzyme and inorganic matrix in the hydrogels.
Figure 3: Mechanical properties of hydrated composite hydrogels.
Figure 4: Transparent ultrastiff composite hydrogels.


  1. 1

    Little, C. J., Bawolin, N. K. & Chen, X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. Part B Rev. 17, 213–227 (2011)

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Phil. Mag. 84, 2167–2186 (2004)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Simha, N. K., Carlson, C. S. & Lewis, J. L. Evaluation of fracture toughness of cartilage by micropenetration. J. Mater. Sci. Mater. Med. 15, 631–639 (2004)

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Koutroupi, K. S. & Barbenel, J. C. Mechanical and failure behaviour of the stratum corneum. J. Biomech. 23, 281–287 (1990)

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Gao, G., Du, G., Sun, Y. & Fu, J. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl. Mater. Interfaces 7, 5029–5037 (2015)

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Calvert, P. Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Lin, S. et al. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter 10, 7519–7527 (2014)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Li, J., Illeperuma, W. R. K., Suo, Z. & Vlassak, J. J. Hybrid hydrogels with extremely high stiffness and toughness. ACS Macro Lett. 3, 520–523 (2014)

    CAS  Article  Google Scholar 

  10. 10

    Killion, J. A. et al. Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater. Sci. Eng. C 33, 4203–4212 (2013)

    CAS  Article  Google Scholar 

  11. 11

    Zhao, L. Z. et al. Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 11, 9229–9246 (2015)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. 12

    Rauner, N., Meuris, M., Dech, S., Godde, J. & Tiller, J. C. Urease-induced calcification of segmented polymer hydrogels—a step towards artificial biomineralization. Acta Biomater. 10, 3942–3951 (2014)

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Luo, Y., Lode, A., Akkineni, A. R. & Gelinsky, M. Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Advances 5, 43480–43488 (2015)

    CAS  Article  Google Scholar 

  14. 14

    Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162–167 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. 15

    Hoffmann, C., Zollfrank, C. & Ziegler, G. Enzyme-catalysed synthesis of calcium phosphates. J. Mater. Sci. Mater. Med. 19, 907–915 (2008)

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Filmon, R., Basle, M. F., Barbier, A. & Chappard, D. Poly(2-hydroxy ethyl methacrylate)-alkaline phosphatase: a composite biomaterial allowing in vitro studies of bisphosphonates on the mineralization process. J. Biomater. Sci. Polym. Edn 11, 849–868 (2000)

    CAS  Article  Google Scholar 

  17. 17

    Douglas, T. E. L. et al. Enzymatic mineralization of gellan gum hydrogel for bone tissue-engineering applications and its enhancement by polydopamine. J. Tissue Eng. Regen. Med. 8, 906–918 (2014)

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Arimoto, H. & Egawa, M. Imaging wavelength and light penetration depth for water content distribution measurement of skin. Skin Res. Technol. 21, 94–100 (2015)

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Buckwalter, J. A. & Mankin, H. J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47, 477–486 (1998)

    CAS  PubMed  Google Scholar 

  20. 20

    Rauner, N., Buenger, L., Schuller, S. & Tiller, J. C. Post-polymerization of urease-induced calcified, polymer hydrogels. Macromol. Rapid Commun. 36, 224–230 (2015)

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Song, R. Q. & Colfen, H. Additive controlled crystallization. CrystEngComm 13, 1249–1276 (2011)

    CAS  Article  Google Scholar 

  22. 22

    Gkioni, K., Leeuwenburgh, S. C. G., Douglas, T. E. L., Mikos, A. G. & Jansen, J. A. Mineralization of hydrogels for bone regeneration. Tissue Eng. B Rev. 16, 577–585 (2010)

    CAS  Article  Google Scholar 

  23. 23

    Schweizer, S. & Taubert, A. Polymer-controlled, bio-inspired calcium phosphate mineralization from aqueous solution. Macromol. Biosci. 7, 1085–1099 (2007)

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Bettini, R., Colombo, P. & Peppas, N. A. Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: transport of theophylline and metoclopramide monohydrochloride. J. Control. Release 37, 105–111 (1995)

    CAS  Article  Google Scholar 

  25. 25

    Sato, K. et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels. Adv. Mater. 27, 6990–6998 (2015)

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Lin, W.-C., Fan, W., Marcellan, A., Hourdet, D. & Creton, C. Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43, 2554–2563 (2010)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Razmjou, A., Simon, G. P. & Wang, H. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent. Chem. Eng. J. 215–216, 913–920 (2013)

    Article  Google Scholar 

  28. 28

    Yuan, S. S., Tang, Q. W. & He, B. L. Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells. J. Mater. Sci. 49, 5481–5491 (2014)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Geise, G. M., Park, H. B., Sagle, A. C., Freeman, B. D. & McGrath, J. E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 369, 130–138 (2011)

    CAS  Article  Google Scholar 

  30. 30

    Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001)

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Discher, D. E., Janmey, P. & Wang, Y.-l. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  32. 32

    Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998)

    CAS  PubMed  Google Scholar 

  33. 33

    Tanriseven, A. & Oelcer, Z. A novel method for the immobilization of glucoamylase onto polyglutaraldehyde-activated gelatin. Biochem. Eng. J. 39, 430–434 (2008)

    CAS  Article  Google Scholar 

  34. 34

    Rivlin, R. S. & Thomas, A. G. Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. Polym. Phys. Ed. 10, 291–318 (1953)

    ADS  CAS  Google Scholar 

  35. 35

    Long, R. & Hui, C.-Y. Fracture toughness of hydrogels: measurement and interpretation. Soft Matter 12, 8069–8086 (2016)

    ADS  CAS  Article  PubMed  Google Scholar 

  36. 36

    Mayumi, K., Guo, J., Narita, T., Hui, C. Y. & Creton, C. Fracture of dual crosslink gels with permanent and transient crosslinks. Extreme Mech. Lett. 6, 52–59 (2016)

    Article  Google Scholar 

  37. 37

    Chevallet, M., Luche, S. & Rabilloud, T. Silver staining of proteins in polyacrylamide gels. Nat. Protocols 1, 1852–1858 (2006)

    CAS  Article  PubMed  Google Scholar 

Download references


We thank Ivoclar Vivadent GmbH for providing EDPOA, and Ciba Specialty Chemicals (part of BASF) for providing Irgacure 651. We thank F. Katzenberg for discussions regarding mechanical testing methods and the SAXS measurements.

Author information




J.C.T. and N.R. designed the study and interpreted the results. N.R. prepared the composites and took optical and SEM images. N.R. performed thermogravimetric analysis and measurements of swelling, enzyme activity, transmittance, diffusion and mechanics. M.M. performed TEM, SAED and EDX analyses. N.R. established the protocol for enzyme-induced mineralization of hydrogel networks. M.Z. established first bulk calcification with alkaline phosphatase during her bachelor thesis. J.C.T. and N.R. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Joerg C. Tiller.

Additional information

Reviewer Information Nature thanks C. Creton, A. Gaharwar and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-5, Supplementary Figures 1-19 and Supplementary References. (PDF 38334 kb)

Supplementary Data

This file contains source data for Supplementary Figures 1, 3-6, 8-9 and 13-14. (ZIP 174 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rauner, N., Meuris, M., Zoric, M. et al. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 543, 407–410 (2017).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing