Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for early life in Earth’s oldest hydrothermal vent precipitates


Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transmitted light images of haematite filaments from the NSB and Løkken jaspers.
Figure 2: Transmitted light images of haematite tubes in the NSB and Løkken jaspers.
Figure 3: Carbonate rosettes from the NSB.
Figure 4: Granules from the Biwabik and NSB jaspers.


  1. Bernard, S. & Papineau, D. Graphitic carbons and biosignatures. Elements 10, 435–440 (2014)

    CAS  Article  Google Scholar 

  2. van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630 (2002)

    CAS  Article  ADS  Google Scholar 

  3. Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2013)

    Article  ADS  Google Scholar 

  4. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999)

    CAS  Article  ADS  Google Scholar 

  5. McCollom, T. M. & Seewald, J. S. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382–401 (2007)

    CAS  Article  Google Scholar 

  6. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996)

    CAS  Article  ADS  Google Scholar 

  7. Papineau, D. et al. Ancient graphite in the Eoarchean quartz-pyroxene rocks from Akilia in southern West Greenland II: isotopic and chemical compositions and comparison with Paleoproterozoic banded iron formations. Geochim. Cosmochim. Acta 74, 5884–5905 (2010)

    CAS  Article  ADS  Google Scholar 

  8. Papineau, D. et al. Ancient graphite in the Eoarchean quartz–pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim. Cosmochim. Acta 74, 5862–5883 (2010)

    CAS  Article  ADS  Google Scholar 

  9. Lepland, A., van Zuilen, M. A. & Philippot, P. Fluid-deposited graphite and its geobiological implications in Early Archean gneiss from Akilia, Greenland. Geobiology 9, 2–9 (2011)

    CAS  Article  Google Scholar 

  10. Papineau, D. et al. Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formation. Nat. Geosci. 4, 376–379 (2011)

    CAS  Article  ADS  Google Scholar 

  11. O’Neil, J., Francis, D. & Carlson, R. W. Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J. Petrol. 52, 985–1009 (2011)

    Article  ADS  Google Scholar 

  12. Cates, N. L., Ziegler, K., Schmitt, A. K. & Mojzsis, S. J. Reduced, reused and recycled: detrital zircons define a maximum age for the Eoarchean (ca. 3750–3780 Ma) Nuvvuagittuq supracrustal belt, Québec (Canada). Earth Planet. Sci. Lett. 362, 283–293 (2013)

    CAS  Article  ADS  Google Scholar 

  13. Darling, J. R. et al. Eoarchean to Neoarchean evolution of the Nuvvuagittuq supracrustal belt: new insights from U-Pb zircon geochronology. Am. J. Sci. 313, 844–876 (2013)

    CAS  Article  ADS  Google Scholar 

  14. O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq greenstone belt. Precambr. Res. 220–221, 23–44 (2012)

    Article  ADS  Google Scholar 

  15. O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008)

    Article  ADS  Google Scholar 

  16. Mloszewska, A. M. et al. The composition of Earth’s oldest iron formations: the Nuvvuagittuq supracrustal belt (Québec, Canada). Earth Planet. Sci. Lett. 317–318, 331–342 (2012)

    Article  ADS  Google Scholar 

  17. O’Neil, J. et al. in Earth’s Oldest Rocks Vol. 15 (eds van Kranendonk, M. J., Smithies, R. H. & Bennett, V. C. ) 219–250 (Elsevier, 2007)

    Article  Google Scholar 

  18. Dauphas, N., Cates, N. L., Mojzsis, S. J. & Busigny, V. Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet. Sci. Lett. 254, 358–376 (2007)

    CAS  Article  ADS  Google Scholar 

  19. Mloszewska, A. M. et al. Chemical sedimentary protoliths in the >3.75Ga Nuvvuagittuq supracrustal belt (Québec, Canada). Gondwana Res. 23, 574–594 (2013)

    CAS  Article  ADS  Google Scholar 

  20. Cates, N. L. & Mojzsis, S. J. Metamorphic zircon, trace elements and Neoarchean metamorphism in the ca. 3.75 Ga Nuvvuagittuq supracrustal belt, Québec (Canada). Chem. Geol. 261, 99–114 (2009)

    Article  ADS  Google Scholar 

  21. Edwards, K. J. et al. Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii. ISME J. 5, 1748–1758 (2011)

    CAS  Article  Google Scholar 

  22. Juniper, S. K. & Fouquet, Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26, 859–869 (1988)

    CAS  Google Scholar 

  23. Li, J. et al. Microbial diversity and biomineralization in low-temperature hydrothermal iron-silica-rich precipitates of the Lau Basin hydrothermal field. FEMS Microbiol. Ecol. 81, 205–216 (2012)

    CAS  Article  Google Scholar 

  24. Boyd, T. D. & Scott, S. D. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: the example of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Geochem. Trans. 2, 45 (2001)

    Article  Google Scholar 

  25. Emerson, D. & Moyer, C. L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition. Appl. Environ. Microbiol. 68, 3085–3093 (2002)

    CAS  Article  Google Scholar 

  26. Hein, J. R., Clague, D. A., Koski, R. A., Embley, R. W. & Dunham, R. E. Metalliferous sediment and a silica-hematite deposit within the Blanco Fracture Zone, northeast Pacific. Mar. Georesour. Geotechnol. 26, 317–339 (2008)

    CAS  Article  Google Scholar 

  27. Grenne, T. & Slack, J. F. Bedded jaspers of the Ordovician Løkken ophiolite, Norway: seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Miner. Depos. 38, 625–639 (2003)

    CAS  Article  ADS  Google Scholar 

  28. Little, C. T. S., Glynn, S. E. J. & Mills, R. A. Four-hundred-and-ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents. Geomicrobiol. J. 21, 415–429 (2004)

    CAS  Article  Google Scholar 

  29. Duhig, N. C., Stolz, J., Davidson, G. J. & Large, R. R. Cambrian microbial and silica gel textures in silica iron exhalites from the Mount Windsor volcanic belt, Australia: their petrography, chemistry, and origin. Econ. Geol. 87, 764–784 (1992)

    CAS  Article  Google Scholar 

  30. Krepski, S. T., Emerson, D., Hredzak-Showalter, P. L., Luther, G. W., III & Chan, C. S. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Geobiology 11, 457–471 (2013)

    CAS  Article  Google Scholar 

  31. Picard, A., Obst, M., Schmid, G., Zeitvogel, F. & Kappler, A. Limited influence of Si on the preservation of Fe mineral-encrusted microbial cells during experimental diagenesis. Geobiology 14, 276–292 (2016)

    CAS  Article  Google Scholar 

  32. Chi Fru, E. et al. Biogenicity of an early Quaternary iron formation, Milos Island, Greece. Geobiology 13, 225–244 (2015)

    CAS  Article  Google Scholar 

  33. Little, C. T. S., Herrington, R., Haymon, R. & Danelian, T. Early Jurassic hydrothermal vent community from the Franciscan Complex, San Rafael Mountains. Calif. Geol. 27, 167–170 (1999)

    Article  Google Scholar 

  34. Ayupova, N. R. & Maslennikov, V. V. Biomorphic textures in the ferruginous-siliceous rocks of massive sulfide-bearing paleohydrothermal fields in the Urals. Lithol. Miner. Resour. 48, 438–455 (2013)

    CAS  Article  Google Scholar 

  35. Sun, Z. et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the southwest Indian Ridge and its implication for the origin of ancient banded iron formations. J. Geophys. Res. Biogeosci. 120, 187–203 (2015)

    CAS  Article  ADS  Google Scholar 

  36. Ayupova, N. R., Maslennikov, V. V., Sadykov, S. A., Maslennikova, S. P. & Danyushevsky, L. V. in Biogenic–Abiogenic Interactions in Natural and Anthropogenic Systems (eds Frank-Kamenetskaya, V. O., Panova, G. E. & Vlasov, Y. D. ) 109–122 (Springer, 2016)

  37. Campbell, K. A. et al. Tracing biosignature preservation of geothermally silicified microbial textures into the geological record. Astrobiology 15, 858–882 (2015)

    CAS  Article  ADS  Google Scholar 

  38. Parenteau, M. N. & Cady, S. L. Microbial biosignatures in iron-mineralized phototrophic mats at Chocolate Pots Hot Springs, Yellowstone National Park, United States. Palaios 25, 97–111 (2010)

    Article  ADS  Google Scholar 

  39. Thompson, K. J., Lliros, M., Michiels, C., Kenward, P. & Crowe, S. in 2014 GSA Annual Meeting Vol. 46, 401 (Geol. Soc. Am. Abstracts with Programs, 2014)

    Google Scholar 

  40. Köhler, I., Konhauser, K. O., Papineau, D., Bekker, A. & Kappler, A. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nat. Commun. 4, 1741 (2013)

    Article  ADS  Google Scholar 

  41. Sun, Z. et al. Mineralogical characterization and formation of Fe-Si oxyhydroxide deposits from modern seafloor hydrothermal vents. Am. Mineral. 98, 85–97 (2012)

    Article  ADS  Google Scholar 

  42. Heaney, P. J. & Veblen, D. R. An examination of spherulitic dubiomicrofossils in Precambrian banded iron formations using the transmission electron microscope. Precambr. Res. 49, 355–372 (1991)

    Article  ADS  Google Scholar 

  43. Beyssac, O., Goffe, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol. 20, 859–871 (2002)

    CAS  Article  ADS  Google Scholar 

  44. Heimann, A. et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet. Sci. Lett. 294, 8–18 (2010)

    CAS  Article  ADS  Google Scholar 

  45. Cappellen, P. V. & Berner, R. A. A mathematical model for the early diagenesis of phosphorus and fluorine in marine sediments: apatite precipitation. Am. J. Sci. 288, 289–333 (1988)

    Article  ADS  Google Scholar 

  46. Papineau, D. et al. Nanoscale petrographic and geochemical insights on the origin of the Palaeoproterozoic stromatolitic phosphorites from Aravalli Supergroup, India. Geobiology 14, 3–32 (2016)

    CAS  Article  Google Scholar 

  47. Brasier, A. T., Rogerson, M. R., Mercedes-Martin, R., Vonhof, H. B. & Reijmer, J. J. G. A test of the biogenicity criteria established for microfossils and stromatolites on Quaternary tufa and speleothem materials formed in the “Twilight Zone” at Caerwys, UK. Astrobiology 15, 883–900 (2015)

    CAS  Article  ADS  Google Scholar 

  48. Zaikin, A. N. & Zhabotinsky, A. M. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    CAS  Article  ADS  Google Scholar 

  49. Smith, A. J. B., Beukes, N. J., Gutzmer, J., Johnson, C. M. & Czaja, A. D. in Goldschmidt. 2384 (Mineralogical Society, 2012)

  50. Walter, M. R., Goode, A. D. T. & Hall, W. D. M. Microfossils from a newly discovered Precambrian stromatolitic iron formation in Western Australia. Nature 261, 221–223 (1976)

    Article  ADS  Google Scholar 

  51. Bolhar, R., Kamber, B. S., Moorbath, S., Fedo, C. M. & Whitehouse, M. J. Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet. Sci. Lett. 222, 43–60 (2004)

    CAS  Article  ADS  Google Scholar 

  52. Wirth, R. Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem. Geol. 261, 217–229 (2009)

    CAS  Article  ADS  Google Scholar 

  53. Zega, T. J., Nittler, L. R., Busemann, H., Hoppe, P. & Stroud, R. M. Coordinated isotopic and mineralogic analyses of planetary materials enabled by in situ lift-out with a focused ion beam scanning electron microscope. Meteorit. Planet. Sci. 42, 1–14 (2007)

    Article  Google Scholar 

  54. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004)

    CAS  Article  ADS  Google Scholar 

  55. Chew, D. M., Sylvester, P. J. & Tubrett, M. N. U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem. Geol. 280, 200–216 (2011)

    CAS  Article  ADS  Google Scholar 

  56. Griffin, W. L., Powell, W. J., Pearson, N. J. & O’Reilly, S. Y. in Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues Vol. 40 (ed. Sylvester, P. J. ) 308–311 (Mineralogical Association of Canada, 2008)

    Google Scholar 

  57. Ludwig, K. R. User’s Manual for Isoplot 3.70. Berkeley Geochronology Center Special Publication 76 (2008)

  58. Reed, W. P. Certificate of Analysis, Standard Reference Materials 612 and 613. Tech. Rep., U. S. National Institute of Standards & Technology (1992)

  59. Jochum, K. P. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 35, 397–429 (2011)

    CAS  Article  Google Scholar 

Download references


M.S.D. and D.P. acknowledge support from UCL and the LCN, and a DTG from EPSRC, UK. D.P. also thanks the NASA Astrobiology Institute (grant no. NNA04CC09A), the Carnegie Institution of Washington and Carnegie of Canada for funding, and the Geological Survey of Western Australia for access and support in the core library. We thank the municipality of Inukjuak, Québec, and the Pituvik Landholding Corporation for permission to work on their territory; M. Carroll for logistical support; J. Davy and A. Beard for assistance with sample preparation and SEM and EPMA analyses; S. Huo for help with FIB nano-fabrication; G. and Y. Shields-Zhou and P. Pogge Von Strandmann for comments on the manuscript; and K. Konhauser for review.

Author information

Authors and Affiliations



M.S.D. and D.P. designed the research and performed micro-analyses. They also wrote the manuscript with important contributions from all co-authors. M.R. conducted LA-ICP-MS analyses. T.G. provided support for field work in Norway. T.G., J.F.S., F.P., and D.P. all supplied samples crucial to the work. J.O. and C.T.S.L. contributed to interpretation of the data.

Corresponding author

Correspondence to Dominic Papineau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks C. House, A. Polat and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Field photographs of the NSB iron formation outcrops.

a, Bands of magnetite and chert. b, Jasper (top red layer) in contact with Fe-rich carbonate (bottom grey layer). c, Layered jaspers with meta-volcanic layers. d, Layered jasper; predominantly bands of grey haematite and haematitic chert. e, Field location, local geology and sample locations (red spots).

Extended Data Figure 2 Rare earth element (REE) post-Archean Australian shale (PAAS) normalized plots.

a, LA-ICP-MS REE measurements in apatite from PC0844. b, Jasper bulk rock REE measurements from PC0824 (dark grey) and PC0844 (light grey). NSB (red15 and green16) and Isua51 (blue) iron formation bulk rock REE.

Source data

Extended Data Figure 3 Thin sections of samples in this study (see Supplementary Information for localities).

Inset in a shows reflected light image of small, sub-spherical chalcopyrites with haematite. Red outlines mark haematite tubes and tube-like structures. Red arrows show the orientation of tubes. Blue circles highlight concretion structure in thin section and slab. Numbering of targets corresponds to Figures. Inset in e shows transmitted light image of carbonaceous material inside apatite lath. All sections are 2.5 cm wide, except rock slab (f) measuring 7 × 2 cm; Løkken-Høydal dimensions (ko) are 2 × 6 cm, except JAH samples in n, which measure 2 × 8 cm.

Extended Data Figure 4 Photomicrographs taken in plane-polarized light with reflected light of haematite tubes and filaments.

Images in left column are taken at the surface of the thin section. Images in right column show a series of stacked images using the Z-project function in ImageJ. Stacked images are formed of 8–9 sequential images taken at 2-μm intervals through the thin section. a, Branching haematite filament. b, Stacked image of a. Arrows point to loose coils. c, d, Hollow tube truncated partially at the surface showing both the top (c, red arrow) and bottom surface (d, black arrow) of the tube. e, Twisted haematite filaments emanating from haematite knob at varying angles and depths through the thin section. Inset shows aligned haematite crystals in filament indicative of twisting; arrow points to three tightly aligned plates. f, Stacked image of e with insets of candidate twisted stalks formed of aligned haematite plates; arrows show twist points. Dashed red boxes correspond to areas of insets. g, Filament diameter measurements from NSB (blue) and Løkken-Høydal (orange) jaspers. Filament diameters for NSB: n = 23, s.d. = 2.8 μm, avg = 8.3 μm; for Løkken-Høydal: n = 28, s.d. = 1.9 μm, avg = 9.1 μm. h, Tube diameters n = 40, s.d. = 6.3 μm, avg = 24.9 μm for NSB; n = 40, s.d. = 3.1 μm, avg = 19.5 μm for Løkken-Høydal.

Extended Data Figure 5 Carbonate–apatite and carbonaceous material in the NSB and Løkken jaspers in association with haematite filaments.

a, b, Transmitted light and Raman images of carbonate associated with carbonaceous material inside a filament mat. c, d, Transmitted light and Raman images of carbonate associated with graphite in the NSB jasper associated with a filament. e, Contextual image of the carbonate grain (red box) with haematite filaments. f, Raman spectra of minerals mapped in this figure. g, Contextual image of carbonate grain (red box) with haematite filaments. h, i, Transmitted light and Raman images of haematite filament in Løkken jasper, associated with apatite and carbonate grains. j, k, Transmitted light and Raman images of haematite filament in NSB jasper associated with carbonate grains (green circles). l, Contextual image of apatite associated with carbonaceous material and carbonate within millimetres of filaments in the Løkken jasper. m, n, Transmitted light and Raman images of apatite grain. o, Contextual image of graphite in carbonate spatially occurring within millimetres of haematite filaments and apatite in the NSB. p, q, Transmitted light and Raman images of graphite particle in carbonate. r, Raman spectra of carbonaceous material in Løkken jaspers from b and n. s, Raman spectra of carbonaceous material in NSB jaspers from d and q.

Extended Data Figure 6 Carbonate rosettes.

a, Transmitted light image of calcite rosettes from the NSB. b, c, Transmitted light and Raman images of target area (dashed outline from a). d, Graphite Raman filter map (filter: 1,580 cm−1, width 40 cm−1). Circled pixels are graphite grains. e, Raman spectra of selected graphite particles. f, Average Raman spectra for Raman map in c with inset of haematite Raman filter map (filter: 1,320 cm−1, width 30 cm−1). Circled pixels are haematite grains. g, Stilpnomelane laths overgrowing apatite in the NSB. h, Ankerite rhombohedra envelop a layer of carbonaceous material in the Dales Gorge Member of the Brockman iron formation. i, Ankerite rosettes with quartz inclusions in a carbonaceous material layer. j, Ankerite rosette with quartz core from the Løkken jasper. k, Ankerite rosettes overgrowing haematite filaments (top) and corresponding Raman map (bottom). l, Selected carbon spectra showing diversity of carbon preservation. Non-graphitized carbon is the most abundant variety in the rosettes. m, Average Raman spectra from map.

Extended Data Figure 7 Transmitted light and reflected light images of haematite rosettes.

ad, From NSB; e, from Løkken jaspers. a, Large (60 μm) haematite rosettes (arrows) with cores. b, Haematite rosettes in dense haematite. c, Deformed, thicker-walled (25 μm) haematite rosettes (arrows). d, Concentric haematite rosette. e, Haematite rosettes from Løkken jaspers, same scale bar for all.

Extended Data Figure 8 Variety of graphitic carbons from the NSB.

a, Carbonaceous material Raman spectra, showing the transition between haematite and carbonaceous material. The 1,320 cm−1 haematite peak produces a disordered carbonaceous material spectrum. However, the G-peak position shows that such carbonaceous material is not disordered carbonaceous material like immature kerogen, which peaks around 1,610 cm−1.The Raman spectra are taken from a section (green line) across a carbon particle in the Raman map inset, which has a 330-nm spatial resolution. Note the inclusions of haematite (pink) in the carbonaceous material (red). All other colours and mineral spectra for the Raman map are in Extended Data Fig. 9g. b, Transmitted light image of graphitic carbon particles from PC0822. c, Secondary electron image, looking down a focused ion beam trench through graphitic carbon particles. d, Raman spectral map of boxed area from b. e, Raman spectra for phases in spectral map. f, 1. Disordered graphitic carbon in apatite lath, transmitted light. 2. Disordered graphitic carbon in a granule, transmitted light. 3. Poorly crystalline graphitic carbon vein, transmitted light. 4. Crystalline graphitic carbon in a carbonate rosette, transmitted light.

Extended Data Figure 9 Granules from the NSB and from the Løkken jaspers.

a, Transmitted light image of a granule in the NSB. b, Raman map of the granule in a. c, Carbonaceous material Raman filter map (filter: 1,580 cm−1, width 80 cm−1). d, Calcite Raman filter map (filter: 1,089 cm−1, width 20 cm−1). e, Apatite Raman filter map (filter: 965 cm−1, width 30 cm−1). f, One micrometre spatial resolution Raman scan of part of the granule in a. g, Raman scan (360 nm resolution) of boxed area in f (yellow and white colours are colour combination artefacts). H, Raman scan (500 nm resolution) of a portion of the interior of the Mary Ellen granule in Fig. 4b, showing carbonaceous material coating a carbonate grain, like carbonaceous material coating a carbonate grain in the NSB granule in a. i, Transmitted light image of granule from the Løkken jasper. j, Granule in i, viewed in cross-polarized light. Note the characteristic internal quartz recrystallization, relative to the matrix. k, Raman map of the granule in i. Note that magnetite forms a rim around the granule as in the NSB and Biwabik granules (Fig. 4). l, Microfossil within a granule preserved in haematite. The morphology shows the characteristic terminal knob of iron like the larger tubes preserved in the NSB. m, Carbonaceous material Raman filter map (filter: 1,566 cm−1, width 60 cm−1). n, Average Raman spectra for all Raman maps in this figure. o, Representative carbonaceous material spectra from granules in this figure. p, q, Cross-polarized images of iron-bearing granules from the Mary Ellen, Biwabik (p) and NSB (q) iron formations showing relative quartz recrystallization and magnetite rims.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-11 and Supplementary References. (PDF 762 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dodd, M., Papineau, D., Grenne, T. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing