Scaling single-cell genomics from phenomenology to mechanism

Subjects

Abstract

Three of the most fundamental questions in biology are how individual cells differentiate to form tissues, how tissues function in a coordinated and flexible fashion and which gene regulatory mechanisms support these processes. Single-cell genomics is opening up new ways to tackle these questions by combining the comprehensive nature of genomics with the microscopic resolution that is required to describe complex multicellular systems. Initial single-cell genomic studies provided a remarkably rich phenomenology of heterogeneous cellular states, but transforming observational studies into models of dynamics and causal mechanisms in tissues poses fresh challenges and requires stronger integration of theoretical, computational and experimental frameworks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The temporal axis.
Figure 2: The spatial axis.
Figure 3: The mechanism axis.

References

  1. 1

    Okabe, Y. & Medzhitov, R. Tissue biology perspective on macrophages. Nature Immunol. 17, 9–17 (2016).

    CAS  Google Scholar 

  2. 2

    Mayr, E. The Growth of Biological Thought: Diversity, Evolution, and Inheritance (Belknap, 1982).

    Google Scholar 

  3. 3

    Szathmary, E. & Maynard-Smith, J. The Major Transitions in Evolution (Oxford University Press, 1995).

    Google Scholar 

  4. 4

    Gould, S. J. Ontogeny and Phylogeny (Belknap, 1977).

    Google Scholar 

  5. 5

    Richardson, L. et al. EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res. 42, D835–D844 (2014).

    CAS  PubMed  Google Scholar 

  6. 6

    Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207–214 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Bakken, T. E. et al. A comprehensive transcriptional map of primate brain development. Nature 535, 367–375 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Jojic, V. et al. Identification of transcriptional regulators in the mouse immune system. Nature Immunol. 14, 633–643 (2013).

    CAS  Google Scholar 

  11. 11

    Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).

    CAS  PubMed  Google Scholar 

  12. 12

    Chao, M. P., Seita, J. & Weissman, I. L. Establishment of a normal hematopoietic and leukemia stem cell hierarchy. Cold Spring Harb. Symp. Quant. Biol. 73, 439–449 (2008).

    CAS  PubMed  Google Scholar 

  13. 13

    Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnol. 30, 777–782 (2012). Refs 13–17 are initial reports on the development and scaling of single-cell RNA-seq.

    Google Scholar 

  14. 14

    Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods 10, 1096–1098 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    CAS  Google Scholar 

  16. 16

    Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012). Refs 18–23 introduce and develop single-cell genome sequencing, which has applications in the inference of cancer evolution.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    CAS  PubMed  Google Scholar 

  20. 20

    Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Leung, M. L., Wang, Y., Waters, J. & Navin, N. E. SNES: single nucleus exome sequencing. Genome Biol. 16, 55 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    CAS  PubMed  Google Scholar 

  23. 23

    Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nature Genet. 48, 1119–1130 (2016).

    CAS  PubMed  Google Scholar 

  24. 24

    Rotem, A. et al. High-throughput single-cell labeling (Hi-SCL) for RNA-Seq using drop-based microfluidics. PLoS ONE 10, e0116328 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nature Biotechnol. 33, 1165–1172 (2015). This paper develops the technique single-cell chromatin immunoprecipitation followed by sequencing (ChIP-seq) as well as the concept of single-cell pooling for the analysis of sparse epigenomic data.

    CAS  Google Scholar 

  26. 26

    Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015). Refs 26 and 27 develop two methods of single-cell assay for transposase-accessible chromatin using sequencing (ATAC-seq) and discuss their application to the identification of cell subtypes and to pooling information across loci.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods 11, 817–820 (2014). Refs 28, 30 and 31 develop variants of single-cell DNA methylation profiling, which are applied to sparse single-cell epigenomic analysis.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Mooijman, D., Dey, S. S., Boisset, J. C., Crosetto, N. & van Oudenaarden, A. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nature Biotechnol. 34, 852–856 (2016). This paper uses restriction enzymes to profile hydroxymethylation and perform very short-term lineage reconstruction.

    CAS  Google Scholar 

  30. 30

    Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Farlik, M. et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10, 1386–1397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013). A proof-of-concept report on single-cell Hi-C (a high-throughput derivative of chromosome conformation capture), which demonstrates the variability of T-cell chromosomal architectures.

    ADS  CAS  Google Scholar 

  34. 34

    Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Krishnaswamy, S. et al. Conditional density-based analysis of T cell signaling in single-cell data. Science 346, 1250689 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl Acad. Sci. USA 111, E5643–E5650 (2014).

    CAS  PubMed  Google Scholar 

  38. 38

    Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnol. 32, 381–386 (2014).

    CAS  Google Scholar 

  41. 41

    Arvey, A. et al. Genetic and epigenetic variation in the lineage specification of regulatory T cells. eLife 4, e07571 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. 42

    Avraham, R. et al. Pathogen cell-to-cell variability drives heterogeneity in host immune responses. Cell 162, 1309–1321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Gaublomme, J. T. et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163, 1400–1412 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860–1872 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    CAS  PubMed  Google Scholar 

  47. 47

    Corces, M. R. et al. Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genet. 48, 1193–1203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016). This paper adapts RNA-seq to the nuclei of single cells, with applications in rare cells and other challenging samples.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

    PubMed  Google Scholar 

  50. 50

    Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate choice. Nature 537, 698–702 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Proserpio, V. et al. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol. 17, 103 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Stubbington, M. J. et al. T cell fate and clonality inference from single-cell transcriptomes. Nature Methods 13, 329–332 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56–61 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nature Biotechnol. 33, 495–502 (2015).

    CAS  Google Scholar 

  57. 57

    Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). Refs 58 and 59 enhance throughputs in single-cell RNA-seq using droplet technology.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Hashimshony, T. et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 77 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Nichterwitz, S. et al. Laser capture microscopy coupled with Smart-seq2 for precise spatial transcriptomic profiling. Nature Commun. 7, 12139 (2016).

    ADS  CAS  Google Scholar 

  62. 62

    Thomsen, E. R. et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nature Methods 13, 87–93 (2016).

    CAS  PubMed  Google Scholar 

  63. 63

    Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers — the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

    CAS  PubMed  Google Scholar 

  65. 65

    Han, F. & Lillard, S. J. In-situ sampling and separation of RNA from individual mammalian cells. Anal. Chem. 72, 4073–4079 (2000).

    CAS  PubMed  Google Scholar 

  66. 66

    Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nature Biotechnol. 34, 1145–1160 (2016).

    CAS  Google Scholar 

  67. 67

    Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nature Methods 11, 163–166 (2014).

    CAS  PubMed  Google Scholar 

  68. 68

    Heimberg, G., Bhatnagar, R., El-Samad, H. & Thomson, M. Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell Syst. 2, 239–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Macaulay, I. C. et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nature Methods 12, 519–522 (2015). Refs 70–76 introduce techniques for the simultaneous profiling of RNA and DNA, RNA and DNA methylation, or RNA and proteins.

    CAS  PubMed  Google Scholar 

  71. 71

    Dey, S. S., Kester, L., Spanjaard, B., Bienko, M. & van Oudenaarden, A. Integrated genome and transcriptome sequencing of the same cell. Nature Biotechnol. 33, 285–289 (2015).

    CAS  Google Scholar 

  72. 72

    Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nature Methods 13, 229–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Frei, A. P. et al. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nature Methods 13, 269–275 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Darmanis, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 14, 380–389 (2016).

    CAS  PubMed  Google Scholar 

  75. 75

    Albayrak, C. et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 61, 914–924 (2016).

    CAS  PubMed  Google Scholar 

  76. 76

    Genshaft, A. S. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 17, 188 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Lu, Y. et al. Combined analysis reveals a core set of cycling genes. Genome Biol. 8, R146 (2007).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Bar-Joseph, Z. et al. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl Acad. Sci. USA 105, 955–960 (2008).

    ADS  CAS  PubMed  Google Scholar 

  79. 79

    Kafri, R. et al. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle. Nature 494, 480–483 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nature Biotechnol. 34, 637–645 (2016). Refs 80–87 introduce techniques for inferring dynamics from the steady state sampling of single-cell profiles.

    CAS  Google Scholar 

  81. 81

    Moignard, V. et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nature Biotechnol. 33, 269–276 (2015).

    CAS  Google Scholar 

  82. 82

    Haghverdi, L., Buttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nature Methods 13, 845–848 (2016).

    CAS  PubMed  Google Scholar 

  83. 83

    Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).

    CAS  PubMed  Google Scholar 

  84. 84

    Chen, J., Schlitzer, A., Chakarov, S., Ginhoux, F. & Poidinger, M. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nature Commun. 7, 11988 (2016).

    ADS  CAS  Google Scholar 

  85. 85

    Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    CAS  PubMed  Google Scholar 

  86. 86

    Shin, J. et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360–372 (2015).

    CAS  PubMed  Google Scholar 

  87. 87

    Gut, G., Tadmor, M. D., Pe'er, D., Pelkmans, L. & Liberali, P. Trajectories of cell-cycle progression from fixed cell populations. Nature Methods 12, 951–954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Proserpio, V. et al. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol. 17, 103 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature Biotechnol. 33, 155–160 (2015).

    CAS  Google Scholar 

  90. 90

    Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Koonin, E. V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res. 5, 1805 (2016).

    Google Scholar 

  92. 92

    Kellogg, R. A. & Tay, S. Noise facilitates transcriptional control under dynamic inputs. Cell 160, 381–392 (2015).

    CAS  PubMed  Google Scholar 

  93. 93

    Afik, S. et al. Targeted reconstruction of T cell receptor sequence from single cell RNA-sequencing links CDR3 length to T cell differentiation state. Preprint at http://biorxiv.org/content/early/2016/08/31/072744 (2016).

  94. 94

    McKenna, A. et al. Whole organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. 95

    Reizel, Y. et al. Cell lineage analysis of the mammalian female germline. PLoS Genet. 8, e1002477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Shlush, L. I. et al. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120, 603–612 (2012).

    CAS  PubMed  Google Scholar 

  97. 97

    Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    CAS  PubMed  Google Scholar 

  98. 98

    Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nature Med. 21, 846–853 (2015).

    CAS  PubMed  Google Scholar 

  99. 99

    Wang, J. et al. Clonal evolution of glioblastoma under therapy. Nature Genet. 48, 768–776 (2016).

    CAS  PubMed  Google Scholar 

  100. 100

    Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Li, S. et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nature Med. 22, 792–799 (2016).

    CAS  PubMed  Google Scholar 

  102. 102

    Durruthy-Durruthy, R. et al. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 157, 964–978 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Achim, K. et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nature Biotechnol. 33, 503–509 (2015).

    CAS  Google Scholar 

  104. 104

    Scialdone, A. et al. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535, 289–293 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015). Refs 105 and 106 develop multiplexed RNA-FISH (ref. 105) or in situ sequencing (ref. 106) to enable the spatial mapping of a large number of different transcripts at single-cell resolution.

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature Methods 11, 417–422 (2014).

    ADS  CAS  PubMed  Google Scholar 

  108. 108

    Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nature Med. 20, 436–442 (2014).

    CAS  PubMed  Google Scholar 

  109. 109

    Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nature Methods 10, 857–860 (2013).

    CAS  PubMed  Google Scholar 

  110. 110

    Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    ADS  PubMed  Google Scholar 

  111. 111

    Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    ADS  CAS  PubMed  Google Scholar 

  112. 112

    Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neurosci. 19, 335–346 (2016).

    CAS  PubMed  Google Scholar 

  113. 113

    Stewart-Ornstein, J., Weissman, J. S. & El-Samad, H. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Gaffney for help with artwork. A.R. is a Howard Hughes Medical Institute investigator. A.T. is a Kimmel investigator and is supported by the Flight Attendant Medical Research Institute and the European Research Council.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Amos Tanay or Aviv Regev.

Ethics declarations

Competing interests

A.R. is a member of the scientific advisory boards of Thermo Fisher Scientific and Syros Pharmaceuticals and is a consultant to the Driver Group.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanay, A., Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017). https://doi.org/10.1038/nature21350

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing