Chiral quantum optics

Abstract

Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light–matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin–photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of basic chiral photon–emitter processes.
Figure 2: Electric field polarization and spin in optical nanofibres and waveguides.
Figure 3: Nanophotonic devices used for chiral coupling between light and quantum emitters.
Figure 8: Total internal reflection of a linearly p-polarized wave at a dielectric interface.
Figure 4: Examples of chiral light–matter interaction in photonic nanostructures.
Figure 5: Photon–emitter scattering for symmetric and chiral coupling.
Figure 6: Applications of chiral light–matter interaction.
Figure 7: Multi-emitter chiral coupling and dynamics.

References

  1. 1

    Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006)

  2. 2

    Gardiner, C. & Zoller, P. The Quantum World of Ultra-cold Atoms and Light. Book I: Foundations of Quantum Optics 1st edn (Imperial College Press, 2014)

  3. 3

    Gardiner, C. & Zoller, P. The Quantum World of Ultra-cold Atoms and Light. Book II: The Physics of Quantum-optical Devices 1st edn (Imperial College Press, 2015)

  4. 4

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015)

    ADS  CAS  Google Scholar 

  6. 6

    Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T 76, 127–137 (1998)

    ADS  Google Scholar 

  7. 7

    Novotny, L. & Hecht, B. Principles of Nano-optics 2nd edn (Cambridge Univ. Press, 2012)

  8. 8

    Bliokh, K. Y. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  9. 9

    Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015)

    ADS  CAS  Google Scholar 

  10. 10

    Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015)

    ADS  CAS  Google Scholar 

  11. 11

    Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273–2276 (1993)

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Gardiner, C. W. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett. 70, 2269–2272 (1993)

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015)

    ADS  MathSciNet  CAS  Google Scholar 

  14. 14

    Lax, M., Louisell, W. H. & McKnight, W. B. From Maxwell to paraxial wave optics. Phys. Rev. A 11, 1365–1370 (1975)

    ADS  Google Scholar 

  15. 15

    Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 85, 061801 (2012). Predicted that strongly confined surface-plasmon modes carry a transverse spin.

    Google Scholar 

  16. 16

    Coles, R. J. et al. Waveguide-coupled photonic crystal cavity for quantum dot spin readout. Opt. Express 22, 2376–2385 (2014)

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Fam, L. K., Liang, J. Q., Hakuta, K. & Balykin, V. I. Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber. Opt. Commun. 242, 445–455 (2004)

    ADS  Google Scholar 

  18. 18

    Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015)

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  19. 19

    Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013). Demonstrated directional emission from a single quantum dot placed in the crossing region between two perpendicular dielectric waveguides.

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Junge, C., O’Shea, D., Volz, J. & Rauschenbeutel, A. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett. 110, 213604 (2013). Demonstration of quantum-state-dependent chiral coupling between a single atom and a whispering-gallery-mode resonator.

    ADS  PubMed  Google Scholar 

  21. 21

    Luxmoore, I. J. et al. Optical control of the emission direction of a quantum dot. Appl. Phys. Lett. 103, 241102 (2013)

    ADS  Google Scholar 

  22. 22

    Neugebauer, M., Bauer, T., Banzer, P. & Leuchs, G. Polarization tailored light driven directional optical nanobeacon. Nano Lett. 14, 2546–2551 (2014)

    ADS  CAS  PubMed  Google Scholar 

  23. 23

    Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin–orbit interaction of light. Science 346, 67–71 (2014)

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Rodríguez-Fortuño, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martínez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photonics 1, 762–767 (2014)

    Google Scholar 

  25. 25

    Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345, 903–906 (2014). Demonstrated directional single-photon switching with a single atom coupled to a whispering-gallery-mode resonator.

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat. Commun. 5, 5713 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Söllner, I. et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol. 10, 775–778 (2015). Demonstrated efficient and engineered directional coupling with a single quantum dot in a photonic-crystal waveguide.

    ADS  PubMed  Google Scholar 

  28. 28

    le Feber, B., Rotenberg, N. & Kuipers, L. Nanophotonic control of circular dipole emission. Nat. Commun. 6, 6695 (2015)

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Coles, R. J. et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun. 7, 11183 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Lee, S.-Y. et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett. 108, 213907 (2012)

    ADS  PubMed  Google Scholar 

  31. 31

    Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013)

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Rodríguez-Fortuño, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013)

    ADS  PubMed  Google Scholar 

  33. 33

    O’Connor, D., Ginzburg, P., Rodríguez-Fortuño, F. J., Wurtz, G. A. & Zayats, A. V. Spin–orbit coupling in surface plasmon scattering by nanostructures. Nat. Commun. 5, 5327 (2014)

    ADS  PubMed  Google Scholar 

  34. 34

    Lang, B., Beggs, D. M., Young, A. B., Rarity, J. G. & Oulton, R. Stability of polarization singularities in disordered photonic crystal waveguides. Phys. Rev. A 92, 063819 (2015)

    ADS  Google Scholar 

  35. 35

    Tighineanu, P., Andersen, M. L., Sørensen, A. S., Stobbe, S. & Lodahl, P. Probing electric and magnetic vacuum fluctuations with quantum dots. Phys. Rev. Lett. 113, 043601 (2014)

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    ADS  CAS  Google Scholar 

  37. 37

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011)

    CAS  Google Scholar 

  38. 38

    Lu, L., Joannopoulos, J. D. & SoljaĆiČ, M. Topological photonics. Nat. Photon. 8, 821–829 (2014)

    ADS  CAS  Google Scholar 

  39. 39

    Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008)

    ADS  Google Scholar 

  40. 40

    Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013)

    ADS  CAS  Google Scholar 

  41. 41

    Schine, N., Ryou, A., Gromov, A., Sommer, A. & Simon, J. Synthetic Landau levels for photons. Nature 534, 671–675 (2016)

    ADS  CAS  PubMed  Google Scholar 

  42. 42

    Ringel, M., Pletyukhov, M. & Gritsev, V. Topologically protected strongly correlated states of photons. New J. Phys. 16, 113030 (2014)

    Google Scholar 

  43. 43

    Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014)

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Schneeweiss, P., Zeiger, S., Hoinkes, T., Rauschenbeutel, A. & Volz, J. Fiber ring resonator with nanofiber section for chiral cavity quantum electrodynamics and multimode strong coupling. Opt. Lett. 42, 85–88 (2017)

    ADS  CAS  PubMed  Google Scholar 

  45. 45

    Reitz, D. et al. Backscattering properties of a waveguide-coupled array of atoms in the strongly nonparaxial regime. Phys. Rev. A 89, 031804 (2014)

    ADS  Google Scholar 

  46. 46

    Corzo, N. V. et al. Large Bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide. Phys. Rev. Lett. 117, 133603 (2016)

    ADS  PubMed  Google Scholar 

  47. 47

    Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000)

    ADS  CAS  Google Scholar 

  48. 48

    Cohen-Tannoudji, C. & Dupont-Roc, J. Experimental study of Zeeman light shifts in weak magnetic fields. Phys. Rev. A 5, 968–984 (1972)

    ADS  Google Scholar 

  49. 49

    Lembessis, V. E. Artificial gauge potentials for neutral atoms: an application in evanescent light fields. J. Opt. Soc. Am. B 31, 1322–1329 (2014)

    ADS  CAS  Google Scholar 

  50. 50

    Mochol, M. & Sacha, K. Artificial magnetic field induced by an evanescent wave. Sci. Rep. 5, 7672 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Schneeweiss, P., Fam, L. K. & Rauschenbeutel, A. Nanofiber-based atom trap created by combining fictitious and real magnetic fields. New J. Phys. 16, 013014 (2014)

    ADS  Google Scholar 

  52. 52

    Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P. & Rauschenbeutel, A. Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms. Phys. Rev. A 89, 063829 (2014)

    ADS  Google Scholar 

  53. 53

    Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photon. 7, 579–582 (2013)

    ADS  CAS  Google Scholar 

  54. 54

    Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015). Non-reciprocal light propagation was demonstrated by coupling spin–momentum-locked light to spin-polarized atoms

    Google Scholar 

  55. 55

    Xia, K. et al. Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling. Phys. Rev. A 90, 043802 (2014)

    ADS  Google Scholar 

  56. 56

    Scheucher, M., Hilico, A., Will, E., Volz, J. & Rauschenbeutel, A. Quantum optical circulator controlled by a single chirally coupled atom. Science 354, 1577–1580 (2016)

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Chang, D. E., VuletiĆ, V. & Lukin, M. D. Quantum nonlinear optics — photon by photon. Nat. Photon. 8, 685–694 (2014)

    ADS  CAS  Google Scholar 

  58. 58

    Javadi, A. et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012)

    ADS  Google Scholar 

  60. 60

    Witthaut, D., Lukin, M. D. & Sørensen, A. S. Photon sorters and QND detectors using single photon emitters. Europhys. Lett. 97, 50007 (2012)

    ADS  Google Scholar 

  61. 61

    Ralph, T. C., Söllner, I., Mahmoodian, S., White, A. G. & Lodahl, P. Photon sorting, efficient Bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Phys. Rev. Lett. 114, 173603 (2015)

    ADS  CAS  PubMed  Google Scholar 

  62. 62

    Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photon. 8, 965–970 (2014)

    ADS  CAS  Google Scholar 

  63. 63

    Rosenblum, S. et al. Extraction of a single photon from an optical pulse. Nat. Photon. 10, 19–22 (2016)

    ADS  CAS  Google Scholar 

  64. 64

    Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008)

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Koshino, K., Inomata, K., Lin, Z., Nakamura, Y. & Yamamoto, T. Theory of microwave single-photon detection using an impedance-matched Λ system. Phys. Rev. A 91, 043805 (2015)

    ADS  Google Scholar 

  66. 66

    Koshino, K., Ishizaka, S. & Nakamura, Y. Deterministic photon–photon gate using a Λ system. Phys. Rev. A 82, 010301 (2010)

    ADS  Google Scholar 

  67. 67

    Young, A. B. et al. Polarization engineering in photonic crystal waveguides for spin-photon entanglers. Phys. Rev. Lett. 115, 153901 (2015)

    ADS  CAS  PubMed  Google Scholar 

  68. 68

    Duan, L. M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    ADS  PubMed  Google Scholar 

  69. 69

    Douglas, J. S. et al. Quantum many-body models with cold atoms coupled to photonic crystals. Nat. Photon. 9, 326–331 (2015)

    ADS  CAS  Google Scholar 

  70. 70

    Goban, A. et al. Atom–light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014)

    ADS  CAS  PubMed  Google Scholar 

  71. 71

    Hung, C. L., Gonzalez-Tudela, A., Cirac, J. I. & Kimble, H. J. Quantum spin dynamics with pairwise-tunable, long-range interactions. Proc. Natl Acad. Sci. USA 113, E4946–E4955 (2016)

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  72. 72

    Stannigel, K., Rabl, P. & Zoller, P. Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New J. Phys. 14, 063014 (2012). Proposed that emitters coupled to a unidirectional bath can be dissipatively driven to form entangled states.

    ADS  Google Scholar 

  73. 73

    Ramos, T., Pichler, H., Daley, A. J. & Zoller, P. Quantum spin dimers from chiral dissipation in cold-atom chains. Phys. Rev. Lett. 113, 237203 (2014)

    ADS  PubMed  Google Scholar 

  74. 74

    Pichler, H., Ramos, T., Daley, A. J. & Zoller, P. Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015)

    ADS  Google Scholar 

  75. 75

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    ADS  CAS  Google Scholar 

  76. 76

    Stannigel, K., Rabl, P., Sørensen, A. S., Lukin, M. & Zoller, P. Optomechanical transducers for quantum-information processing. Phys. Rev. A 84, 042341 (2011)

    ADS  Google Scholar 

  77. 77

    Gonzalez-Ballestero, C., Gonzalez-Tudela, A., Garcia-Vidal, F. J. & Moreno, E. Chiral route to spontaneous entanglement generation. Phys. Rev. B 92, 155304 (2015)

    ADS  Google Scholar 

  78. 78

    Dicke, R. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    ADS  CAS  MATH  Google Scholar 

  79. 79

    Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Sukhov, S., Kajorndejnukul, V., Rezvani Naraghi, R. & Dogariu, A. Dynamic consequences of optical spin–orbit interaction. Nat. Photon. 9, 809–812 (2015)

    ADS  CAS  Google Scholar 

  81. 81

    Rodríguez-Fortuño, F. J., Engheta, N., Martínez, A. & Zayats, A. V. Lateral forces on circularly polarizable particles near a surface. Nat. Commun. 6, 8799 (2015)

    ADS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Scheel, S., Buhmann, S. Y., Clausen, C. & Schneeweiss, P. Directional spontaneous emission and lateral Casimir–Polder force on an atom close to a nanofiber. Phys. Rev. A 92, 043819 (2015)

    ADS  Google Scholar 

  83. 83

    Kalhor, F., Thundat, T. & Jacob, Z. Universal spin–momentum locked optical forces. Appl. Phys. Lett. 108, 061102 (2016)

    ADS  Google Scholar 

  84. 84

    Chang, D. E., Cirac, J. I. & Kimble, H. J. Self-organization of atoms along a nanophotonic waveguide. Phys. Rev. Lett. 110, 113606 (2013)

    ADS  CAS  PubMed  Google Scholar 

  85. 85

    Grießer, T. & Ritsch, H. Light-induced crystallization of cold atoms in a 1D optical trap. Phys. Rev. Lett. 111, 055702 (2013)

    ADS  PubMed  Google Scholar 

  86. 86

    Holzmann, D., Sonnleitner, M. & Ritsch, H. Self-ordering and collective dynamics of transversely illuminated point-scatterers in a 1D trap. Eur. Phys. J. D 68, 352 (2014)

    ADS  Google Scholar 

  87. 87

    Sapienza, L. et al. Cavity quantum electrodynamics with Anderson localized modes. Science 327, 1352–1355 (2010)

    ADS  CAS  PubMed  Google Scholar 

  88. 88

    Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014)

    ADS  PubMed  Google Scholar 

  89. 89

    Van Mechelen, T. & Jacob, Z. Universal spin–momentum locking of evanescent waves. Optica 3, 118–126 (2016)

    ADS  CAS  Google Scholar 

  90. 90

    Shen, J. T. & Fan, S. Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001–2003 (2005)

    ADS  CAS  PubMed  Google Scholar 

  91. 91

    Chang, D. E., Jiang, L., Gorshkov, A. V. & Kimble, H. J. Cavity QED with atomic mirrors. New J. Phys. 14, 063003 (2012)

    ADS  Google Scholar 

  92. 92

    Lehmberg, R. H. Radiation from an N-atom system. I. General formalism. Phys. Rev. A 2, 883–888 (1970)

    ADS  Google Scholar 

  93. 93

    Lehmberg, R. H. Radiation from an N-atom system. II. Spontaneous emission from a pair of atoms. Phys. Rev. A 2, 889–896 (1970)

    ADS  Google Scholar 

  94. 94

    Pichler, H. & Zoller, P. Photonic circuits with time delays and quantum feedback. Phys. Rev. Lett. 116, 093601 (2016)

    ADS  PubMed  Google Scholar 

  95. 95

    Grimsmo, A. L. Time-delayed quantum feedback control. Phys. Rev. Lett. 115, 060402 (2015)

    ADS  PubMed  Google Scholar 

  96. 96

    Laakso, M. & Pletyukhov, M. Scattering of two photons from two distant qubits: exact solution. Phys. Rev. Lett. 113, 183601 (2014)

    ADS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge I. Söllner and A. S. Sørensen for discussions. P.L., S.M. and S.S. acknowledge financial support from the following funding agencies: the Lundbeck Foundation, the Villum Foundation, the Carlsberg Foundation, the European Research Council (ERC Consolidator Grant ‘ALLQUANTUM’ and ERC Advanced Grant ‘SCALE’), Innovation Fund Denmark (Quantum Innovation Center ‘Qubiz’) and the Danish Council for Independent Research. A.R., P.S. and J.V. acknowledge financial support from the following funding agencies: the Austrian Science Fund (SFB NextLite Project No. F 4908-N23, SFB FoQuS Project No. F 4017 and DK CoQuS Project No. W 1210-N16), the European Commission (IP SIQS No. 600645 and Marie Curie IEF Grant No. 300392) and the European Research Council (ERC Consolidator Grant ‘NanoQuaNt’). H.P. and P.Z. are supported by the SFB FOQUS of the Austrian Science Fund FWF, and ERC Synergy Grant UQUAM.

Author information

Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Peter Lodahl or Arno Rauschenbeutel or Peter Zoller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks A. Clerk, M. Hafezi and the other anonymous reviewer(s) for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lodahl, P., Mahmoodian, S., Stobbe, S. et al. Chiral quantum optics. Nature 541, 473–480 (2017). https://doi.org/10.1038/nature21037

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing