Abstract

Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development. LECs use fatty acid β-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid β-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1–p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

Gene Expression Omnibus

References

  1. 1.

    & Lymphangiogenesis and cancer. Genes Cancer 2, 1146–1158 (2011)

  2. 2.

    , & Regulation and implications of inflammatory lymphangiogenesis. Trends Immunol. 33, 350–356 (2012)

  3. 3.

    The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011)

  4. 4.

    , et al. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014)

  5. 5.

    et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002)

  6. 6.

    et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002)

  7. 7.

    & Development of the mammalian lymphatic vasculature. J. Clin. Invest. 124, 888–897 (2014)

  8. 8.

    et al. COUP-TFII orchestrates venous and lymphatic endothelial identity by homo- or hetero-dimerisation with PROX1. J. Cell Sci. 126, 1164–1175 (2013)

  9. 9.

    et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422–2432 (2007)

  10. 10.

    et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28, 2175–2187 (2014)

  11. 11.

    et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015)

  12. 12.

    et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004)

  13. 13.

    et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32, 629–644 (2013)

  14. 14.

    et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011)

  15. 15.

    et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J. Clin. Invest. 120, 1694–1707 (2010)

  16. 16.

    et al. Lymphatic vessel assembly is impaired in Aspp1-deficient mouse embryos. Dev. Biol. 316, 149–159 (2008)

  17. 17.

    et al. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85α, p55α, and p50α. Dev. Dyn. 238, 2670–2679 (2009)

  18. 18.

    et al. cKit Lineage Hemogenic Endothelium-Derived Cells Contribute to Mesenteric Lymphatic Vessels. Cell Rep. S2211-1247(15)00172-2 (2015)

  19. 19.

    et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 225, 351–357 (2002)

  20. 20.

    et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008)

  21. 21.

    , & Ras/MAPK signaling modulates VEGFR-3 expression through Ets-mediated p300 recruitment and histone acetylation on the Vegfr3 gene in lymphatic endothelial cells. PLoS One 7, e51639 (2012)

  22. 22.

    et al. Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J. 21, 1003–1012 (2007)

  23. 23.

    et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc. 136, 9308–9319 (2014)

  24. 24.

    et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306–319 (2014)

  25. 25.

    , & Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52, 5746–5759 (2013)

  26. 26.

    , & Posttranslational modifications of human histone H3: an update. Proteomics 14, 2047–2060 (2014)

  27. 27.

    , , & Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 25, 387–395 (2004)

  28. 28.

    et al. Sunitinib inhibits inflammatory corneal lymphangiogenesis. Invest. Ophthalmol. Vis. Sci. 54, 3082–3093 (2013)

  29. 29.

    et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009)

  30. 30.

    et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14, 159–172 (2014)

  31. 31.

    et al. Integrin-α9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev. Cell 17, 175–186 (2009)

  32. 32.

    , , & Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745–2756 (1973)

  33. 33.

    et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med. 194, 797–808 (2001)

  34. 34.

    et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6, 61–73 (2004)

  35. 35.

    et al. Lentiviral vectors efficiently transduce quiescent mature 3T3-L1 adipocytes. Mol. Ther. 9, 209–217 (2004)

  36. 36.

    , & Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies. Exp. Cell. Res. 297, 415–423 (2004)

  37. 37.

    , , , & Additional parameters for the morphometry of angiogenesis and lymphangiogenesis in corneal flat mounts. Exp. Eye Res. 89, 274–276 (2009)

  38. 38.

    et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008)

  39. 39.

    et al. A signal-noise model for significance analysis of ChIP-seq with negative control. Bioinformatics 26, 1199–1204 (2010)

  40. 40.

    , & edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010)

  41. 41.

    & SILEC: a protocol for generating and using isotopically labeled coenzyme A mass spectrometry standards. Nat. Protocols 7, 1–12 (2011)

  42. 42.

    , & Energy turnover of vascular endothelial cells. Am. J. Physiol. 273, C205–C213 (1997)

  43. 43.

    & What determines the intracellular ATP concentration. Biosci. Rep. 22, 501–511 (2002)

  44. 44.

    et al. Physiological levels of ATP negatively regulate proteasome function. Cell Res. 20, 1372–1385 (2010)

  45. 45.

    & Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J. Biol. Chem. 242, 3239–3241 (1967)

  46. 46.

    et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 2008)

  47. 47.

    et al. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400–1412 (2014)

Download references

Acknowledgements

We thank R. Adams and T. Mäkinen for providing the VE-cadherin(PAC)-creERT2 and Prox1-creERT2 mice, respectively. This work was supported by: fellowships from FWO (to B.W.W., X.W., B.T., J.K., R.M., U.B., J.G., B.G.), Marie Curie (to B.W.W., M.G., U.B.), EMBO (to H.H.) and LE&RN/FDRS (A.Z.); and supporting grants from IUAP P7/03 (P.C.), Methusalem funding by the Flemish Government (P.C.), FWO (G.0598.12, G.0532.10, G.0817.11, G.0834.13, 1.5.202.10.N Krediet aan navorsers, to P.C.), Leducq Transatlantic Network Artemis (P.C.), AXA Research Fund (1465, to P.C.), Foundation against Cancer (P.C.), ERC Advanced Research Grant (EU-ERC269073, to P.C.), ERC Starting Grant (IMAGINED-201293, to A.L.), German Research Foundation (D.F.G.) Grants (CRC629, CRC656, to F.K.), and co-funding by KU Leuven Methusalem (S.M.F.). We would like to thank A. Bouché, A. Carton, A. Manderveld, K. Peeters, N. Dai, J. Souffreau, A. van Nuffelen, B. Tembuyser, A. Van Den Eynde, S. Christen, K. Feyen, W. Martens, K. Brepoels, P.J. Coolen, M. Nijs, P. Vanwesemael, B. Verherstraeten, G. Dubois, E. Van Dyck, E. Gils, B. Vanwetswinkel, D. Smeets, G. Peuteman, T. Van Brussel, B. Boeckx, A. Acosta Sanchez and D. Verdegem for their technical assistance, and various laboratory members for their feedback and discussions. We thank S. Aerts, H. Gerhardt and M. Mazzone for critical suggestions and discussions.

Author information

Author notes

    • Brian W. Wong
    • , Xingwu Wang
    •  & Annalisa Zecchin

    These authors contributed equally to this work.

Affiliations

  1. Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium

    • Brian W. Wong
    • , Xingwu Wang
    • , Annalisa Zecchin
    • , Ivo Cornelissen
    • , Joanna Kalucka
    • , Rindert Missiaen
    • , Hongling Huang
    • , Ulrike Brüning
    • , Stefan Vinckier
    • , Jermaine Goveia
    • , Chenyan Shi
    • , Veronica Moral-Dardé
    • , Sabine Wyns
    • , Martin Lippens
    • , Luc Schoonjans
    • , Mieke Dewerchin
    • , Guy Eelen
    •  & Peter Carmeliet
  2. Laboratory of Angiogenesis and Vascular Metabolism, VIB Vesalius Research Center, VIB, Leuven B-3000, Belgium

    • Brian W. Wong
    • , Xingwu Wang
    • , Annalisa Zecchin
    • , Ivo Cornelissen
    • , Joanna Kalucka
    • , Rindert Missiaen
    • , Hongling Huang
    • , Ulrike Brüning
    • , Stefan Vinckier
    • , Jermaine Goveia
    • , Chenyan Shi
    • , Veronica Moral-Dardé
    • , Sabine Wyns
    • , Martin Lippens
    • , Luc Schoonjans
    • , Mieke Dewerchin
    • , Guy Eelen
    •  & Peter Carmeliet
  3. Laboratory of Translational Genetics, Department of Oncology, KU Leuven, Leuven B-3000, Belgium

    • Bernard Thienpont
    • , Hui Zhao
    •  & Diether Lambrechts
  4. Laboratory of Translational Genetics, VIB Vesalius Research Center, VIB, Leuven B-3000, Belgium

    • Bernard Thienpont
    • , Hui Zhao
    •  & Diether Lambrechts
  5. Laboratory of Biology of Tumor and Development, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA-Cancer), University of Liège, Liège B-4000, Belgium

    • Melissa García-Caballero
    • , Silvia Blacher
    •  & Agnès Noel
  6. Brain Research Institute, Faculty of Medicine and Science, University of Zurich, Zurich 8057, Switzerland

    • Marlen Knobloch
    •  & Sebastian Jessberger
  7. Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster 48161, Germany

    • Cathrin Dierkes
    • , René Hägerling
    •  & Friedemann Kiefer
  8. Metabolomics Core Facility, VIB Vesalius Research Center, VIB, Leuven B-3000, Belgium

    • Veronica Moral-Dardé
    •  & Bart Ghesquière
  9. Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Vesalius Research Center, VIB, B-3000 Leuven, Belgium

    • Sarah-Maria Fendt
  10. Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium

    • Sarah-Maria Fendt
  11. Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven B-3000, Belgium

    • Aernout Luttun
  12. Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven B-3000, Belgium

    • Lieve Moons

Authors

  1. Search for Brian W. Wong in:

  2. Search for Xingwu Wang in:

  3. Search for Annalisa Zecchin in:

  4. Search for Bernard Thienpont in:

  5. Search for Ivo Cornelissen in:

  6. Search for Joanna Kalucka in:

  7. Search for Melissa García-Caballero in:

  8. Search for Rindert Missiaen in:

  9. Search for Hongling Huang in:

  10. Search for Ulrike Brüning in:

  11. Search for Silvia Blacher in:

  12. Search for Stefan Vinckier in:

  13. Search for Jermaine Goveia in:

  14. Search for Marlen Knobloch in:

  15. Search for Hui Zhao in:

  16. Search for Cathrin Dierkes in:

  17. Search for Chenyan Shi in:

  18. Search for René Hägerling in:

  19. Search for Veronica Moral-Dardé in:

  20. Search for Sabine Wyns in:

  21. Search for Martin Lippens in:

  22. Search for Sebastian Jessberger in:

  23. Search for Sarah-Maria Fendt in:

  24. Search for Aernout Luttun in:

  25. Search for Agnès Noel in:

  26. Search for Friedemann Kiefer in:

  27. Search for Bart Ghesquière in:

  28. Search for Lieve Moons in:

  29. Search for Luc Schoonjans in:

  30. Search for Mieke Dewerchin in:

  31. Search for Guy Eelen in:

  32. Search for Diether Lambrechts in:

  33. Search for Peter Carmeliet in:

Contributions

B.W.W., X.W., A.Z., B.T., I.C., J.K., M.G., R.M., H.H., U.B., S.B., S.V., J.G., H.Z., C.D., C.S., R.H., V.M., S.W., M.L., B.G., L.S., M.D., G.E. performed research and/or analysed the data; B.W.W., X.W., A.Z., B.T., I.C., M.D., D.L., P.C. designed experiments; M.K., S.J., F.K., S.M.F. provided mice and/or advice; A.L., A.N., L.M., D.L. provided reagents and discussed results; B.W.W., A.Z. made the figures; B.W.W., P.C. wrote the paper; P.C. conceptualized the study. All authors discussed the results and commented on the manuscript.

Competing interests

P.C. declares to be named as inventor on patent applications, claiming subject matter related to the results described in this paper. The other authors declare no competing financial interests.

Corresponding author

Correspondence to Peter Carmeliet.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Figure

    Uncropped scans with size marker indication for Fig. 1d, Fig. 3e, Fig. 3i, Fig. 4d, Fig. 6b, Fig. 6c and Extended Data Fig. 5a.

  2. 2.

    Supplementary Information

    This file contains Supplementary Discussion 1-4 and an additional reference.

Excel files

  1. 1.

    Supplementary Table 1

    This file shows peaks from Prox1-FLAG Chip-seq and mapping of Prox1, H3K9ac and P300 Chip-seq data.

  2. 2.

    Supplementary Table 2

    This fie shows peaks from H3K9ac Chip-seq in pLECs versus VECs and pLECs upon CPT1aKD versus pLECs at baseline.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature21028

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.