Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primordial helium entrained by the hottest mantle plumes

Abstract

Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior1,2,3. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times4 the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle6,7,8, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes9,10, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle11, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes12. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle13,14, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir1,2,3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The maximum 3He/4He values at 38 hotspots organized in order of decreasing maximum 3He/4He.
Figure 2: Map showing the maximum 3He/4He values at global hotspots.
Figure 3: Maximum 3He/4He values at plume-fed hotspots compared with seismic shear-wave velocity anomalies at 200 km and with hotspot buoyancy flux.

Similar content being viewed by others

References

  1. Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012)

    CAS  ADS  PubMed  Google Scholar 

  2. Rizo, H. et al. Memories of Earth formation in the modern mantle: W isotopic compositions of flood basalt lavas. Science 352, 809–812 (2016)

    CAS  ADS  PubMed  Google Scholar 

  3. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010)

    CAS  ADS  PubMed  Google Scholar 

  4. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003)

    CAS  ADS  PubMed  Google Scholar 

  5. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Ballentine, C. J. & Wieler, R. ), Rev. Mineral. Geochem. Vol. 47, 247–318 (Mineralogical Society of America, 2002)

    CAS  Google Scholar 

  6. Allègre, C. J., Staudacher, T., Sarda, P. & Kurz, M. D. Constraints on evolution of Earth’s mantle from rare gas systematics. Nature 303, 762–766 (1983)

    ADS  Google Scholar 

  7. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992)

    CAS  ADS  PubMed  Google Scholar 

  8. Class, C. & Goldstein, S. L. Evolution of helium isotopes in the Earth’s mantle. Nature 436, 1107–1112 (2005)

    CAS  ADS  PubMed  Google Scholar 

  9. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015)

    CAS  ADS  PubMed  Google Scholar 

  10. Boschi, L., Becker, T. W. & Steinberger, B. Mantle plumes: Dynamic models and seismic images. Geochem. Geophys. Geosyst. 7, Q10006 (2007)

    Google Scholar 

  11. Konter, J. G. & Becker, T. W. Shallow lithospheric contribution to mantle plumes revealed by integrating seismic and geochemical data. Geochem. Geophys. Geosyst. 13, Q02004 (2012)

    ADS  Google Scholar 

  12. Jellinek, A. M. & Manga, M. Links between long-lived hotspots, mantle plume, D′′, and plate tectonics. Rev. Geophys. 42, RG3002 (2004)

    ADS  Google Scholar 

  13. Samuel, H. & Farnetani, C. G. Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett. 207, 39–56 (2003)

    CAS  ADS  Google Scholar 

  14. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016)

    CAS  ADS  Google Scholar 

  15. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    CAS  ADS  Google Scholar 

  16. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    CAS  ADS  Google Scholar 

  17. White, W. M. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem. Geol. 419, 10–28 (2015)

    CAS  ADS  Google Scholar 

  18. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    ADS  Google Scholar 

  19. Class, C., Goldstein, S. L., Stute, M., Kurz, M. D. & Schlosser, P. Grand Comore Island: a well-constrained low 3He/4He mantle plume. Earth Planet. Sci. Lett. 233, 391–409 (2005)

    CAS  ADS  Google Scholar 

  20. Farley, K. A., Natland, J. H. & Craig, H. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–199 (1992)

    CAS  ADS  Google Scholar 

  21. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272, 991–995 (1996)

    CAS  ADS  PubMed  Google Scholar 

  22. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006)

    ADS  Google Scholar 

  23. Putirka, K. Excess temperatures at ocean islands: implications for mantle layering and convection. Geology 36, 283–286 (2008)

    CAS  ADS  Google Scholar 

  24. King, S. D. & Adam, C. Hotspot swells revisited. Phys. Earth Planet. Inter. 235, 66–83 (2014)

    ADS  Google Scholar 

  25. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models Geochem. Geophys. Geosyst. 3, 1003 (2002)

    ADS  Google Scholar 

  26. Williams, C. D., Li, M., McNamara, A. K., Garnero, E. J. & van Soest, M. C. Episodic entrainment of deep primordial mantle material into ocean island basalts. Nat. Commun. 6, 8937 (2015)

    CAS  ADS  PubMed  Google Scholar 

  27. Li, M., McNamara, A. K. & Garnero, E. J. Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nat. Geosci. 7, 366–370 (2014)

    CAS  ADS  Google Scholar 

  28. Lin, S.-C. & van Keken, P. E. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst. 7, Q03003 (2006)

    ADS  Google Scholar 

  29. Coltice, N., Moreira, M., Hernlund, J. & Labrosse, S. Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet. Sci. Lett. 233, 391–409 (2005)

    ADS  Google Scholar 

  30. Deschamps, F., Kaminski, E. & Tackley, P. J. A deep mantle origin for the primitive signature of ocean island basalt. Nat. Geosci. 4, 879–882 (2011)

    CAS  ADS  Google Scholar 

  31. Steinberger, B. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. 105, 11127–11152 (2000)

    ADS  Google Scholar 

  32. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003)

    CAS  ADS  Google Scholar 

  33. Macpherson, C., Hilton, D. R., Sinton, J. M., Poreda, R. J. & Craig, H. High 3He/4He ratios in the Manus backarc basin: implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology 26, 1007–1010 (1998)

    CAS  ADS  Google Scholar 

  34. Graham, D. W., Johnson, K. T. M., Priebe, L. D. & Lupton, J. E. Hotspot-ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul Islands: helium isotope evidence. Earth Planet. Sci. Lett. 167, 297–310 (1999)

    CAS  ADS  Google Scholar 

  35. Dunai, T. J. & Baur, H. Helium, neon, and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. Geochim. Cosmochim. Acta 59, 2767–2783 (1995)

    CAS  ADS  Google Scholar 

  36. Graham, D. W., Larsen, L. M., Hanan, B. B., Storey, M., Pedersen, A. K. & Lupton, J. E. Helium isotope composition of the early Iceland mantle plume inferred from the Tertiary picrites of West Greenland. Earth Planet. Sci. Lett. 160, 241–255 (1998)

    CAS  ADS  Google Scholar 

  37. Starkey, N. A. et al. Helium isotopes in early Iceland plume picrites: constraints on the composition of high 3He/4He mantle. Earth Planet. Sci. Lett. 277, 91–100 (2009)

    CAS  ADS  Google Scholar 

  38. Hilton, D. R., Grönvold, K., Macpherson, C. G. & Castillo, P. R. Extreme 3He/4He ratios in Iceland: constraining the common component in mantle plumes. Earth Planet. Sci. Lett. 173, 53–60 (1999)

    CAS  ADS  Google Scholar 

  39. Marty, B., Pik, R. & Gezahegn, Y. Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution. Earth Planet. Sci. Lett. 144, 223–237 (1996)

    CAS  ADS  Google Scholar 

  40. Scarsi, P. G. & Craig, H. Helium isotope ratios in Ethiopian Rift basalts. Earth Planet. Sci. Lett. 144, 505–516 (1996)

    CAS  ADS  Google Scholar 

  41. Halldórsson, S. A., Hilton, D. R., Scarsi, P., Abebe, T. & Hopp, J. A common mantle plume source beneath the entire East African Rift System revealed by coupled helium-neon isotope systematics. Geophys. Res. Lett. 41, 2304–2311 (2014)

    ADS  Google Scholar 

  42. Kurz, M. D., Jenkins, W. J. & Hart, S. R. Helium isotope systematics of ocean islands and mantle heterogeneity. Nature 297, 43–47 (1982)

    CAS  ADS  Google Scholar 

  43. Kurz, M. D., Garcia, M. O., Frey, F. A. & O’Brien, P. A. Temporal helium isotopic variations within Hawaiian volcanoes: basalts from Mauna Loa and Haleakala. Geochim. Cosmochim. Acta 51, 2905–2914 (1987)

    CAS  ADS  Google Scholar 

  44. Kurz, M. D., Curtice, J., Lott, D. E. III & Solow, A. Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys. Geosyst. 5, Q04G14 (2004)

    Google Scholar 

  45. Valbracht, P. J., Staudacher, T., Malahoff, A. & Allègre, C. J. Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. 150, 399–411 (1997)

    CAS  ADS  Google Scholar 

  46. Kurz, M. D., Meyer, P. S. & Sigurdsson, H. Helium isotopic systematics within the neovolcanic zones of Iceland. Earth Planet. Sci. Lett. 74, 291–305 (1985)

    CAS  ADS  Google Scholar 

  47. Kurz, M. D. & Geist, D. Dynamics of the Galapagos hotspot from helium isotope geochemistry. Geochim. Cosmochim. Acta 63, 4139–4156 (1999)

    CAS  ADS  Google Scholar 

  48. Graham, D. W., Christie, D. M., Harpp, K. S. & Lupton, J. E. Mantle plume helium in submarine basalts from the Galapagos platform. Science 262, 2023–2026 (1993)

    CAS  ADS  PubMed  Google Scholar 

  49. Jackson, M. G. et al. Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high 3He/4He. Geochem. Geophys. Geosyst. 9, (2008)

  50. Workman, R. et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end member: evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004)

    ADS  Google Scholar 

  51. Jackson, M., Kurz, M., Hart, S. & Workman, R. New Samoan lavas from Ofu island reveal a hemispherically heterogeneous high 3He/4He mantle. Earth Planet. Sci. Lett. 264, 360–374 (2007a)

    CAS  ADS  Google Scholar 

  52. Poreda, R. J., Schilling, J.-G. & Craig, H. Helium isotope ratios in Easter Microplate basalts. Earth Planet. Sci. Lett. 119, 319–329 (1993)

    CAS  ADS  Google Scholar 

  53. Stroncik, N., Niedermann, S., Schnabel, E. & Erzinger, J. Determining the geochemical structure of the mantle from surface isotope distribution patterns? Insights from Ne and He isotopes and abundance ratios. AGU Fall Meet. abstr. V51B–2519 (2011)

  54. Honda, M. & Woodhead, J. D. A primordial solar-neon enriched component in the source of EM-I-type ocean island basalts from the Pitcairn Seamounts, Polynesia. Earth Planet. Sci. Lett. 236, 597–612 (2005)

    CAS  ADS  Google Scholar 

  55. Garapić, G. et al. A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: implications for the origin of EM-1 (enriched mantle 1). Lithos 228–229, 1–11 (2015)

    ADS  Google Scholar 

  56. Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007)

    CAS  ADS  PubMed  Google Scholar 

  57. Graham, D. W., Humphris, S. E., Jenkins, W. J. & Kurz, M. D. Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett. 110, 121–131 (1992)

    CAS  ADS  Google Scholar 

  58. Hanyu, T. & Kaneoka, I. The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature 390, 273–276 (1997)

    CAS  ADS  Google Scholar 

  59. Parai, R., Mukhopadhyay, S. & Lassiter, J. C. New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth Planet. Sci. Lett. 277, 253–261 (2009)

    CAS  ADS  Google Scholar 

  60. Hanyu, T., Tatsumi, Y. & Kimura, J.-I. Constraints on the origin of the HIMU reservoir from He–Ne–Ar isotope systematics. Earth Planet. Sci. Lett. 307, 377–386 (2011)

    CAS  ADS  Google Scholar 

  61. Qin, Y., Capdeville, Y., Montagner, J.-P., Boschi, L. & Becker, T. W. Reliability of mantle tomography models assessed by spectral element simulation. Geophys. J. Int. 177, 125–144 (2009)

    ADS  Google Scholar 

  62. Steinberger, B. & Calderwood, A. R. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006)

    CAS  ADS  Google Scholar 

  63. Ritsema, J., van Heijst, H. J., Deuss, A. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltimes, and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011)

    ADS  Google Scholar 

  64. Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. 115, (2010)

  65. Auer, L., Boschi, L., Becker, T. W., Nissen-Meyer, T. & Giardini, D. Savani: a variable-resolution whole-mantle model of anisotropic shear-velocity variations based on multiple datasets. J. Geophys. Res. 119, 3006–3034 (2014)

    ADS  Google Scholar 

  66. Stixrude, L. & Lithgow-Bertelloni, C. Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J. Geophys. Res. 110, B03204 (2005)

    ADS  Google Scholar 

  67. Yuan, H. & Dueker, K. Teleseismic P-wave tomogram of the Yellowstone plume. Geophys. Res. Lett. 32, L07304 (2005)

    ADS  Google Scholar 

  68. Waite, G. P., Smith, R. B. & Allen, R. M. VP and VS structure of the Yellowstone hot spot from teleseismic tomography: evidence for an upper mantle plume. J. Geophys. Res. 111, B04303 (2006)

    ADS  Google Scholar 

  69. Graham, D. W. et al. Mantle source provinces beneath the Northwestern USA delimited by helium isotopes in young basalts. J. Volcanol. Geotherm. Res. 188, 128–140 (2009)

    CAS  ADS  Google Scholar 

  70. Kincaid, C., Druken, K., Griffiths, R. & Stegman, D. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow. Nat. Geosci. 6, 395–399 (2013)

    CAS  ADS  Google Scholar 

  71. Leonard, T. & Liu, L. The role of a mantle plume in the formation of Yellowstone volcanism. Geophys. Res. Lett. 43, (2016)

  72. MacPherson, C. G., Hilton, D. R., Day, J. M. D., Lowry, D. & Grönvold, K. High-3He/4He, depleted mantle and low-δ18O, recycled oceanic lithosphere in the source of central Iceland magmatism. Earth Planet. Sci. Lett. 233, 411–427 (2005)

    CAS  ADS  Google Scholar 

  73. Kurz, M. D., Jenkins, W. J., Hart, S. R. & Clague, D. Helium isotopic variations in volcanic rocks from Loihi seamount and the island of Hawaii. Earth Planet. Sci. Lett. 66, 388–406 (1983)

    CAS  ADS  Google Scholar 

  74. Moreira, M., Doucelance, R., Kurz, M. D., Dupré, B. & Allègre, C. J. Helium and lead isotope geochemistry of the Azores Archipelago. Earth Planet. Sci. Lett. 169, 189–205 (1999)

    CAS  ADS  Google Scholar 

  75. Moreira, M. & Allègre, C. J. Rare gas systematics on Mid Atlantic Ridge (37-40°N). Earth Planet. Sci. Lett. 198, 401–416 (2002)

    CAS  ADS  Google Scholar 

  76. Moreira, M., Kanzari, A. & Madureira, P. Helium and neon isotopes in São Miguel island basalts, Azores Archipelago: new constraints on the “low 3He” hotspot origin. Chem. Geol. 322–323, 91–98 (2012)

    ADS  Google Scholar 

  77. Hilton, D. R., Barling, J. & Wheller, G. E. Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373, 330–333 (1995)

    CAS  ADS  Google Scholar 

  78. Farley, K. A., Basu, A. R. & Craig, H. He, Sr and Nd isotopic variations in lavas from Juan Fernandez Archipelago, SE Pacific. Contrib. Mineral. Petrol. 115, 75–87 (1993)

    CAS  ADS  Google Scholar 

  79. Staudacher, T. & Allègre, C. J. Noble gases in glass samples from Tahiti: Teahitia, Rocard and Mehetia. Earth Planet. Sci. Lett. 93, 210–222 (1989)

    CAS  ADS  Google Scholar 

  80. Moreira, M. & Allègre, C. J. Helium isotopes on the Macdonald seamount (Austral chain): constraints on the origin of the superswell. C. R. Geosci. 336, 983–990 (2004)

    CAS  Google Scholar 

  81. Doucelance, R., Escrig, S., Moreira, M., Gariépy, C. & Kurz, M. D. Pb–Sr–He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochim. Cosmochim. Acta 67, 3717–3733 (2003)

    CAS  ADS  Google Scholar 

  82. Sarda, P., Moreira, M., Staudacher, T., Schilling, J.-G. & Allègre, C. J. Rare gas systematics on the southernmost Mid-Atlantic Ridge: constraints on the lower mantle and the Dupal source. J. Geophys. Res. 105, 5973–5996 (2000)

    CAS  ADS  Google Scholar 

  83. Kurz, M. D., Le Roex, A. P. & Dick, H. J. B. Isotope geochemistry of the oceanic mantle near Bouvet triple junction. Geochim. Cosmochim. Acta 62, 841–852 (1998)

    CAS  ADS  Google Scholar 

  84. Castillo, P. R., Scarsi, P. & Craig, H. He, Sr, Nd and Pb isotopic constraints on the origin of the Marquesas and other linear volcanic chains. Chem. Geol. 240, 205–221 (2007)

    CAS  ADS  Google Scholar 

  85. Nicolaysen, K. P., Frey, F. A., Mahoney, J. J., Johnson, K. T. M. & Graham, D. W. Influence of the Amsterdam/St. Paul hot spot along the Southeast Indian Ridge between 77° and 88°E: correlations of Sr, Nd, Pb, and He isotopic variations with ridge segmentation. Geochem. Geophys. Geosyst. 8, Q09007 (2007)

    ADS  Google Scholar 

  86. Breton, T. et al. Geochemical heterogeneities within the Crozet hotspot. Earth Planet. Sci. Lett. 376, 126–136 (2013)

    CAS  ADS  Google Scholar 

  87. Graham, D. W., Lupton, J., Alberède, F. & Condomines, M. Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Reunion Island. Nature 347, 545–548 (1990)

    CAS  ADS  Google Scholar 

  88. Jackson, M.G., Price, A.A., Blichert-Toft, J., Kurz, M.D. & Reinhard, A. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He. Chem. Geol. http://dx.doi.org/10.1016/j.chemgeo.2016.10.038 (in the press)

  89. Moreira, M., Staudacher, T., Sarda, P., Schilling, J.-G. & Allègre, C. J. A primitive plume neon component in MORB: the Shona ridge-anomaly, South Atlantic (51-52°S). Earth Planet. Sci. Lett. 133, 367–377 (1995)

    CAS  ADS  Google Scholar 

  90. Hanyu, T. Deep plume origin of the Louisville hotspot: noble gas evidence. Geochem. Geophys. Geosyst. 15, 565–576 (2014)

    ADS  Google Scholar 

  91. Graham, D. W., Hoernle, K. A., Lupton, J. E. & Schmincke, H. U. in Shallow Level Processes in Ocean Island Magmatism: Distinguishing Mantle and Crustal Signatures (eds Bohrson, W. A., Davidson, J. & Wolff, J. A. ) 1–64 (Chapman Conference, American Geophysical Union, 1996)

  92. Hilton, D. R., Macpherson, C. G. & Elliott, T. R. Helium isotope ratios in mafic phenocrysts and geothermal fluids from La Palma, the Canary Islands (Spain): implications for HIMU mantle sources. Geochim. Cosmochim. Acta 64, 2119–2132 (2000)

    ADS  Google Scholar 

  93. Day, J. M. D. & Hilton, D. R. Origin of 3He/4He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth Planet. Sci. Lett. 305, 226–234 (2011)

    CAS  ADS  Google Scholar 

  94. Pik, R., Marty, B. & Hilton, D. R. How many mantle plumes in Africa? The geochemical point of view. Chem. Geol. 226, 100–114 (2006)

    CAS  ADS  Google Scholar 

  95. Lupton, J. E., Graham, D. W., Delaney, J. R. & Johnson, H. P. Helium isotope variations in Juan De Fuca Ridge basalts. Geophys. Res. Lett. 20, 1851–1854 (1993)

    CAS  ADS  Google Scholar 

  96. Schilling, J.-G., Kingsley, R., Fontignie, D., Poreda, R. & Xue, S. Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: A He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey, Mohns, and Knipovich Ridges. J. Geophys. Res. 104, 10543–10569 (1999)

    CAS  ADS  Google Scholar 

  97. Debaille, V. et al. Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim. Cosmochim. Acta 73, 3423–3449 (2009)

    CAS  ADS  Google Scholar 

  98. Reid, M. R. & Graham, D. W. Resolving lithospheric and sub-lithospheric contributions helium isotope variations in basalts from the southwestern US. Earth Planet. Sci. Lett. 144, 213–222 (1996)

    CAS  ADS  Google Scholar 

  99. Franz, G., Steiner, G., Volker, F. & Pudlo, D. Plume related alkaline magmatism in Central Africa – the Meidob Hills (W. Sudan). Chem. Geol. 157, 27–47 (1999)

    CAS  ADS  Google Scholar 

  100. Ammon, K., Dunai, T. J., Stuart, F. M., Meriaux, A.-S. & Gayer, E. Cosmogenic 3He exposure ages and geochemistry of basalts from Ascension Island, Atlantic Ocean. Quat. Geochronol. 4, 525–532 (2009)

    Google Scholar 

  101. Barfod, D. N., Ballentine, C. J., Halliday, A. N. & Fitton, J. G. Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high (HIMU) mantle. J. Geophys. Res. 104, 29,509–29,527 (1999)

    CAS  ADS  Google Scholar 

  102. Hanyu, T. et al. Isotope evolution in the HIMU reservoir beneath St. Helena: implications for the mantle recycling of U and Th. Geochim. Cosmochim. Acta 143, 232–252 (2014)

    CAS  ADS  Google Scholar 

  103. Eiler, J. M. et al. Oxygen isotope variations in ocean island basalt phenocrysts. Geochim. Cosmochim. Acta 61, 2281–2293 (1997)

    CAS  ADS  Google Scholar 

  104. O’Connor, J. M. & Jokat, W. Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in the Walvis Ridge. Geology 43, 715–718 (2015)

    ADS  Google Scholar 

  105. Hoernle, K. et al. How and when plume zonation appeared during the 132 Myr ago evolution of the Tristan Hotspot. Nat. Commun. 6, 7799 (2015)

    CAS  ADS  PubMed  Google Scholar 

  106. Hansen, S. E., Nyblade, A. A. & Benoit, M. H. Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: implications for the origin of Cenozoic Afro-Arabian tectonism. Earth Planet. Sci. Lett. 319–320, 23–34 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

R. G. Blotkamp inspired and guided fundamental development. We thank C. Dalton, M. Edwards, S. Grand, S. Halldórsson, C. Ji, M. Manga, A. McNamara, A. Reinhard, J. Ritsema, B. Romanowicz, R. Rudnick, F. Spera, T. Tanimoto, P. van Keken, C. Williams and Q. Williams for discussion. The 2016 CIDER programme at University of California Santa Barbara is acknowledged for providing a venue for interdisciplinary collaboration. Constructive comments from D. Graham and S. King improved the manuscript. M.G.J. acknowledges grants from NSF that funded this research (EAR-1347377 and EAR-1624840). T.W.B. was supported in part by grants EAR-1460479 and EAR-1338329, and J.G.K. by OCE-1538121.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript.

Corresponding author

Correspondence to M. G. Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks D. Graham and S. King for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Maps showing the maximum 3He/4He at global hotspots.

The magnitude of maximum 3He/4He values, for plume-fed (red circles) and non-plume-fed (cyan diamonds) hotspots, scale with the size of the symbol (see Supplementary Table 1). The scale shows the how the size of the symbol scales with the magnitude of the 3He/4He values, and shows 5Ra, 15Ra and 25Ra increments as examples. See the source data for this figure, in Supplementary Table 1, which cites refs 4, 9, 10, 19, 20, 24, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106. Hotspots in Fig. 1 (see Supplementary Table 1) not evaluated for the presence of a plume are represented by orange symbols. Three different methods are used to determine whether or not a hotspot is associated with a plume: the F&R plume catalogue9 (top panel), the Boschi-1 plume catalogue10 using SMEAN25 (middle panel), and the Boschi-2 plume catalogue10 that uses five different seismic models (bottom panel). The background of the maps is contoured (greyscale) based on seismic anomalies (δv) at 200 km for the SMEAN2 seismic model. The three panels use the same 3He/4He database (see Fig. 1 and Supplementary Table 1). The middle panel is also shown as Fig. 3.

Extended Data Figure 2 Maximum 3He/4He at hotspots compared with seismic velocity anomalies at 200 km.

Data are taken from several global seismic models (SMEAN2, GyPSum-S64, S40RTS63, SAVANI65, SEMUCB-WM19 and SMEAN25) and three plume classification schemes from refs 9 and 10. See the source data for this figure, in Supplementary Table 1, which cites refs 4, 9, 10, 19, 20, 24, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106. The Pearson (r) and Spearman rank (rS) correlation coefficients are provided in the panels and are calculated from individual observations for plume-fed hotspots (for the red symbols only), non-plume-fed hotspots (blue symbols), and all hotspots (red and blue symbols); the text in boxes provides information about correlation coefficients for plume-fed hotspots only (red text), non-plume-fed hotspots only (blue text), and all hotspots (black text). Spearman correlation coefficients provide more reliable estimates of correlation in the presence of nonlinear relationships, but results for r and rS are generally consistent. To evaluate the actual statistical relevance of the correlations, the 1σ uncertainty is provided (calculated using bootstrap), as is the significance level of the correlation coefficients; this P value (in parentheses, given in per cent) is calculated with Student’s t-test assuming normally distributed data. In each panel, the presence or absence of a plume depends on the plume catalogue used (see Fig. 1 and Supplementary Table 1): The left panels use the F&R plume catalogue9 (Fig. 1); the middle panels use the Boschi-1 plume catalogue10, which has normalized vertical extent values NVE ≥ 0.5 as derived from the SMEAN model (Fig. 1); the right panels use the Boschi-2 plume catalogue10, which relies on the average NVE calculated from five different seismic models (Fig. 1), and defines plumes as having NVE ≥ 0.5. The sample sizes for the Boschi-1, Boschi-2 and F&R plume catalogues are as follows: Boschi-1 (n = 23 plumes, n = 9 non-plumes), Boschi-2 (n = 21 plumes, n = 11 non-plumes), F&R (n = 27 plumes, n = 11 non-plumes). All panels use the same 3He/4He database (see Supplementary Table 1). The panels showing SMEAN2 seismic anomalies at 200 km for the Boschi-1 and -2 plume catalogues10 are also shown as Fig. 3.

Extended Data Figure 3 Maximum 3He/4He at hotspots versus hotspot buoyancy flux.

Correlation values and plume selection as in Extended Data Fig. 2. See the source data for this figure, in Supplementary Table 1, which cites refs 4, 9, 10, 19, 20, 24, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 45, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106. Hotspot buoyancy flux models are from ref. 24, and include the ‘geometrical’ hotspot buoyancy flux, the ‘MiFil area’ buoyancy flux, and the ‘MiFil volume’ buoyancy flux. Because hotspot buoyancy fluxes are not available for the Manus Basin locality, the sample sizes for the Boschi-1, Boschi-2 and F&R plume catalogues are as follows: Boschi-1 (n = 23 plumes, n = 9 non-plumes), Boschi-2 (n = 21 plumes, n = 11 non-plumes), F&R (n = 26 plumes, n = 11 non-plumes). The panels showing MiFil volume hotspot buoyancy flux for the Boschi-1 and -2 plume catalogues10 are also shown in Fig. 3.

Supplementary information

Supplementary Tables

This file contains Supplementary Table 1. (XLSX 34 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, M., Konter, J. & Becker, T. Primordial helium entrained by the hottest mantle plumes. Nature 542, 340–343 (2017). https://doi.org/10.1038/nature21023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21023

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing