Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rise of plastic bioelectronics


Plastic bioelectronics is a research field that takes advantage of the inherent properties of polymers and soft organic electronics for applications at the interface of biology and electronics. The resulting electronic materials and devices are soft, stretchable and mechanically conformable, which are important qualities for interacting with biological systems in both wearable and implantable devices. Work is currently aimed at improving these devices with a view to making the electronic–biological interface as seamless as possible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The diversity of plastic bioelectronics.
Figure 2: Soft electronic polymers for plastic bioelectronics can be stretchable, biodegradable and have self-healing properties.


  1. 1

    Berggren, M. & Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 19, 3201–3213 (2007).

    CAS  Google Scholar 

  2. 2

    Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    CAS  Google Scholar 

  3. 3

    Wallace, G. G., Moulton, S. E. & Wang, C. Proc. SPIE 7642, 764202 (2010).

    Google Scholar 

  4. 4

    Liao, C. et al. Flexible organic electronics in biology: materials and devices. Adv. Mater. 27, 7493–7527 (2015).

    CAS  PubMed  Google Scholar 

  5. 5

    Fitzpatrick, D. Implantable Electronic Medical Devices (Elsevier, 2015).

    Google Scholar 

  6. 6

    Lay-Ekuakille, A. & Mukhopadhyay, S. C. Wearable and Autonomous Biomedical Devices and Systems for Smart Environment (Springer, 2010).

    Google Scholar 

  7. 7

    Embracing the organics world. Nature Mater. 12, 591 (2013).

  8. 8

    Freed, L. E., Engelmayr, G. C., Borenstein, J. T., Moutos, F. T. & Guilak, F. Advanced material strategies for tissue engineering scaffolds. Adv. Mater. 21, 3410–3418 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Delmas, P., Hao, J. & Rodat-Despoix, L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nature Rev. Neurosci. 12, 139–153 (2011).

    CAS  Google Scholar 

  10. 10

    Bredas, J.-L. & Marder, S. R. The WSPC Reference on Organic Electronics: Organic Semiconductors: Organic Semiconductors (World Scientific Publishing, 2016).

    Google Scholar 

  11. 11

    Crawford, G. Flexible Flat Panel Displays (John Wiley, 2005).

    Google Scholar 

  12. 12

    Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. USA 98, 4835–4840 (2001).

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Someya, T. et al. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl Acad. Sci. USA 101, 9966–9970 (2004). This paper reports that an artificial electronic skin has been made using flexible multipoint sensors with an active matrix circuit.

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    ADS  CAS  PubMed  Google Scholar 

  15. 15

    Irimia-Vladu, M., Głowacki, E. D., Voss, G., Bauer, S. & Sariciftci, N. S. Green and biodegradable electronics. Mater. Today 15, 340–346 (2012).

    CAS  Google Scholar 

  16. 16

    Gamota, D. R., Brazis, P., Kalyanasundaram, K. & Zhang, J. Printed Organic and Molecular Electronics (Springer Science & Business Media, 2013).

    Google Scholar 

  17. 17

    Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).

    CAS  Google Scholar 

  18. 18

    Wallace, G. G., Moulton, S. E. & Clark, G. M. Electrode–cellular interface. Science 324, 185–186 (2009).

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Martin, D. C. & Malliaras, G. G. Interfacing electronic and ionic charge transport in bioelectronics. ChemElectroChem 3, 686–688 (2016).

    CAS  Google Scholar 

  20. 20

    Simon, D. T. et al. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nature Mater. 8, 742–746 (2009).

    ADS  CAS  Google Scholar 

  21. 21

    Wessling, B. New insight into organic metal polyaniline morphology and structure. Polymers 2, 786–798 (2010).

    CAS  Google Scholar 

  22. 22

    Groenendaal, L. B., Jonas, F., Freitag, D., Pielartzik, H. & Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481–494 (2000).

    CAS  Google Scholar 

  23. 23

    Worfolk, B. J. et al. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl Acad. Sci. USA 112, 14138–14143 (2015).

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    ADS  CAS  PubMed  Google Scholar 

  25. 25

    Luo, C. et al. General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764–2771 (2014).

    ADS  CAS  PubMed  Google Scholar 

  26. 26

    Yuan, Y. et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Commun. 5, 3005 (2014).

    ADS  Google Scholar 

  27. 27

    Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). This paper reports the first ultrathin, integrated, organic transistor circuit and sensor, made on plastic foils with a thickness of 1 μm, in what is now referred to as 'imperceptible electronics'.

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics 7, 811–816 (2013).

    ADS  CAS  Google Scholar 

  30. 30

    Lipomi, D. J., Tee, B. C. K., Vosgueritchian, M. & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).

    CAS  PubMed  Google Scholar 

  31. 31

    Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol. 6, 788–792 (2011).

    ADS  CAS  Google Scholar 

  32. 32

    Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun. 6, 7461 (2015).

    ADS  CAS  Google Scholar 

  33. 33

    Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    ADS  CAS  PubMed  Google Scholar 

  34. 34

    Liang, J. et al. Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. Nature Commun. 6, 7647 (2015).

    ADS  CAS  Google Scholar 

  35. 35

    Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotechnol. 7, 803–809 (2012).

    ADS  CAS  Google Scholar 

  36. 36

    Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    ADS  CAS  PubMed  Google Scholar 

  37. 37

    Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).

    CAS  Google Scholar 

  38. 38

    Oh, J. Y., Kim, S., Baik, H.-K. & Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 28, 4455–4461 (2016).

    CAS  PubMed  Google Scholar 

  39. 39

    O'Connor, B. et al. Correlations between mechanical and electrical properties of polythiophenes. ACS Nano 4, 7538–7544 (2010).

    CAS  PubMed  Google Scholar 

  40. 40

    Savagatrup, S., Printz, A. D., O'Connor, T. F., Zaretski, A. V. & Lipomi, D. J. Molecularly stretchable electronics. Chem. Mater. 26, 3028–3041 (2014).

    CAS  Google Scholar 

  41. 41

    Lipomi, D. J. & Bao, Z. Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4, 3314–3328 (2011).

    CAS  Google Scholar 

  42. 42

    Shin, M. et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 26, 3706–3711 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    CAS  PubMed  Google Scholar 

  44. 44

    Bettinger, C. J. & Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22, 651–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43, 588–610 (2014).

    CAS  PubMed  Google Scholar 

  46. 46

    Campana, A., Cramer, T., Simon, D. T., Berggren, M. & Biscarini, F. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014).

    CAS  PubMed  Google Scholar 

  47. 47

    Tobjork, D. & Osterbacka, R. Paper electronics. Adv. Mater. 23, 1935–1961 (2011).

    PubMed  Google Scholar 

  48. 48

    Zheng, Y. F., Gu, X. N. & Witte, F. Biodegradable metals. Mater. Sci. Eng. R. 77, 1–34 (2014).

    Google Scholar 

  49. 49

    Hwang, S.-W. et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 26, 3905–3911 (2014).

    CAS  PubMed  Google Scholar 

  50. 50

    Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nature Mater. 15, 782–791 (2016).

    ADS  CAS  Google Scholar 

  51. 51

    Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Tao, H. et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl Acad. Sci. USA 111, 17385–17389 (2014).

    ADS  CAS  PubMed  Google Scholar 

  53. 53

    Rivers, T. J., Hudson, T. W. & Schmidt, C. E. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 12, 33–37 (2002).

    CAS  Google Scholar 

  54. 54

    Yang, Y. & Urban, M. W. Self-healing polymeric materials. Chem. Soc. Rev. 42, 7446–7467 (2013).

    CAS  PubMed  Google Scholar 

  55. 55

    Williams, K. A., Boydston, A. J. & Bielawski, C. W. Towards electrically conductive, self-healing materials. J. R. Soc. Interface 4, 359–362 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnol. 7, 825–832 (2012).

    ADS  CAS  Google Scholar 

  57. 57

    Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chem. 5, 1042–1048 (2013).

    ADS  CAS  Google Scholar 

  58. 58

    Gong, C. et al. A healable, semitransparent silver nanowire–polymer composite conductor. Adv. Mater. 25, 4186–4191 (2013).

    CAS  PubMed  Google Scholar 

  59. 59

    Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770 (2012).

    ADS  Google Scholar 

  60. 60

    Myny, K. et al. An 8-bit, 40-instructions-per-second organic microprocessor on plastic foil. IEEE J. Solid-State Circuits 47, 284–291 (2012).

    ADS  Google Scholar 

  61. 61

    Gelinck, G. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nature Mater. 3, 106–110 (2004).

    ADS  CAS  Google Scholar 

  62. 62

    Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    ADS  CAS  Google Scholar 

  63. 63

    Subramanian, V. et al. Progress toward development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE 93, 1330–1338 (2005).

    CAS  Google Scholar 

  64. 64

    Khodagholy, D. et al. High transconductance organic electrochemical transistors. Nature Commun. 4, 2133 (2013).

    ADS  Google Scholar 

  65. 65

    Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    ADS  CAS  Google Scholar 

  66. 66

    Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun. 4, 1859 (2013).

    ADS  Google Scholar 

  67. 67

    Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

    ADS  CAS  PubMed  Google Scholar 

  68. 68

    Jeon, J., Lee, H.-B.-R. & Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013).

    CAS  PubMed  Google Scholar 

  69. 69

    Mulla, M. Y. et al. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nature Commun. 6, 6010 (2015).

    ADS  CAS  Google Scholar 

  70. 70

    Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).

    CAS  PubMed  Google Scholar 

  71. 71

    Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nature Commun. 5, 5745 (2014). This paper reports that pulse oximetry has been achieved in solution-processable organic light-emitting diodes and organic photodetectors, expanding the applications of organic photonic devices to chemical sensing.

    ADS  CAS  Google Scholar 

  72. 72

    Yokota, T. et al. Ultraflexible organic photonic skin. Sci. Adv. 2, e1501856 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Fukuda, K. et al. Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nature Commun. 5, 4147 (2014).

    ADS  CAS  Google Scholar 

  75. 75

    Reichert, W. M. Indwelling Neural Implants: Strategies For Contending With The In Vivo Environment (CRC Press, 2007).

    Google Scholar 

  76. 76

    Asplund, M., Nyberg, T. & Inganäs, O. Electroactive polymers for neural interfaces. Polym. Chem. 1, 1374–1391 (2010).

    CAS  Google Scholar 

  77. 77

    Kozai, T. D. Y. & Kipke, D. R. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain. J. Neurosci. Meth. 184, 199–205 (2009).

    CAS  Google Scholar 

  78. 78

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015). This study expands the stability and clinical benefits of flexible electronics by creating an 'e-dura' that uses stretchable electrodes and microfluidic channels for controllable drug delivery.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. & Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006).

    ADS  PubMed  Google Scholar 

  80. 80

    Venkatraman, S. et al. In vitro and In vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 307–316 (2011).

    PubMed  Google Scholar 

  81. 81

    Green, R. & Abidian, M. R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 27, 7620–7637 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nature Commun. 4, 1575 (2013). This paper exploits the transconductance, mechanical flexibility and biocompatibility of organic electrochemical transistors to create a sensor with a high signal-to-noise ratio that records brain activity.

    ADS  Google Scholar 

  83. 83

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nature Neurosci. 18, 310–315 (2015).

    CAS  PubMed  Google Scholar 

  84. 84

    Xu, L. et al. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–1737 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Park, D.-W. et al. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nature Commun. 5, 5258 (2014).

    ADS  CAS  Google Scholar 

  86. 86

    Ouyang, L., Shaw, C. L., Kuo, C.-c., Griffin, A. L. & Martin, D. C. In vivo polymerization of poly (3, 4-ethylenedioxythiophene) (PEDOT) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation (DA) task. J. Neural Eng. 11, 026005 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Hassarati, R. T., Marcal, H., Foster, L. J. R. & Green, R. A. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces. J. Biomed. Mater. Res. B 104, 712–722 (2016).

    CAS  Google Scholar 

  88. 88

    Richardson, R. T. et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30, 2614–2624 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Jonsson, A. et al. Therapy using implanted organic bioelectronics. Sci. Adv. 1, e1500039 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Williamson, A. et al. Controlling epileptiform activity with organic electronic ion pumps. Adv. Mater. 27, 3138–3144 (2015).

    CAS  PubMed  Google Scholar 

  91. 91

    Schmidt, C. E., Shastri, V. R., Vacanti, J. P. & Langer, R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl Acad. Sci. USA 94, 8948–8953 (1997).

    ADS  CAS  PubMed  Google Scholar 

  92. 92

    Huang, J. et al. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS ONE 7, e39526 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Wong, J. Y., Langer, R. & Ingber, D. E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian-cells. Proc. Natl Acad. Sci. USA 91, 3201–3204 (1994).

    ADS  CAS  PubMed  Google Scholar 

  94. 94

    Wan, A. M.-D. et al. 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B 3, 5040–5048 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nature Photonics 7, 400–406 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Qiu, F. et al. Magnetic helical microswimmers functionalized with lipoplexes for targeted gene delivery. Adv. Funct. Mater. 25, 1666–1671 (2015).

    CAS  Google Scholar 

  97. 97

    Tee, B. C. K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015). By mimicking the characteristics of animal skin and nerve cells, this study integrates ultrasensitive pressure sensors with organic transistor circuits to stimulate mouse brain.

    ADS  CAS  PubMed  Google Scholar 

  98. 98

    Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    ADS  CAS  PubMed  Google Scholar 

  99. 99

    Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    ADS  CAS  Google Scholar 

  100. 100

    Someya, T. Building bionic skin. IEEE Spectrum 50, 50–56 (2013).

    Google Scholar 

  101. 101

    Irimia-Vladu, M. et al. Indigo – a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24, 375–380 (2012).

    CAS  PubMed  Google Scholar 

  102. 102

    Buchko, C. J., Slattery, M. J., Kozloff, K. M. & Martin, D. C. Mechanical properties of biocompatible protein polymer thin films. J. Mater. Res. 15, 231–242 (2000).

    ADS  CAS  Google Scholar 

  103. 103

    Shackelford, J. F., Han, Y.-H., Kim, S. & Kwon, S.-H. CRC Materials Science and Engineering Handbook (CRC Press, 2016).

    Google Scholar 

  104. 104

    Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011). This study integrates inorganic electronic elements into an ultrathin, low-modulus device that conforms to the surface of skin, leading to monitoring of vital information without the need for adhesives.

    ADS  CAS  PubMed  Google Scholar 

  105. 105

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Mater. 12, 938–944 (2013).

    ADS  CAS  Google Scholar 

  106. 106

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnol. 33, 1280–1286 (2015).

    CAS  Google Scholar 

  107. 107

    Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo . Nature Neurosci. 14, 1599–1605 (2011).

    CAS  PubMed  Google Scholar 

Download references


The authors acknowledge R. Nawrocki for fruitful discussions and J. Xu for help with formatting.

Author information



Corresponding author

Correspondence to Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Someya, T., Bao, Z. & Malliaras, G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing