Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Printing soft matter in three dimensions

Abstract

Light- and ink-based three-dimensional (3D) printing methods allow the rapid design and fabrication of materials without the need for expensive tooling, dies or lithographic masks. They have led to an era of manufacturing in which computers can control the fabrication of soft matter that has tunable mechanical, electrical and other functional properties. The expanding range of printable materials, coupled with the ability to programmably control their composition and architecture across various length scales, is driving innovation in myriad applications. This is illustrated by examples of biologically inspired composites, shape-morphing systems, soft sensors and robotics that only additive manufacturing can produce.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Common light- and ink-based 3D printing methods.
Figure 2: Sizes and shapes of typical 3D-printed objects.
Figure 3: Techniques for the fabrication of complex structures.
Figure 4: Bio-inspired composites.
Figure 5: Stimuli-responsive, morphing architectures.
Figure 6: Soft sensors, actuators and robots.

Similar content being viewed by others

References

  1. Swainson, W. K. Method, medium and apparatus for producing three-dimensional figure product. US patent 4,041,476 (1977).

  2. Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 52, 1770–1773 (1981).

    ADS  Google Scholar 

  3. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. US patent 4,575,330 (1986).

  4. Sachs, E. M., Haggerty, J. S., Cima, M. J. & Williams, P. A. Three-dimensional printing techniques. US patent 5,205,055 (1993).

  5. Beaman, J. J. & Deckard, C. R. Selective laser sintering with assisted powder handling. US patent 4,938,816 (1990).

  6. Crump, S. S. Apparatus and method for creating three-dimensional objects. US patent 5,121,329 (1992).

  7. Bradshaw, S., Bowyer, A. & Haufe, P. The intellectual property implications of low-cost 3D printing. ScriptEd 7, 5–31 (2010).

    Google Scholar 

  8. Lipson, H. & Kurman, M. Fabricated: The New World of 3D Printing (John Wiley, 2013). This book provides an overview of 3D printing and its impact on society.

    Google Scholar 

  9. Morrison, R. J. et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci. Transl. Med. 7, 285ra64 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Gupta, M. K. et al. 3D printed programmable release capsules. Nano Lett. 15, 5321–5329 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malda, J. et al. 25th anniversary article: Engineering hydrogels for biofabrication. Adv. Mater. 25, 5011–5028 (2013).

    CAS  PubMed  Google Scholar 

  12. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338, 921–926 (2012).

    ADS  CAS  PubMed  Google Scholar 

  13. Villar, G., Graham, A. D. & Bayley, H. A Tissue-like printed material. Science 340, 48–52 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mannoor, M. S. et al. 3D printed bionic ears. Nano Lett. 13, 2634–2639 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kolesky, D. B. et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26, 3124–3130 (2014). This paper demonstrates multimaterial 3D printing of soft materials with disparate chemical and mechanical properties.

    CAS  PubMed  Google Scholar 

  16. Murphy, S. V & Atala, A. 3D bioprinting of tissues and organs. Nature Biotechnol. 32, 773–785 (2014).

    CAS  Google Scholar 

  17. Ma, X. et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl Acad. Sci. USA 113, 2206–2211 (2016).

    ADS  CAS  PubMed  Google Scholar 

  18. Gissibl, T., Thiele, S., Herkommer, A. & Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554–560 (2016).

    ADS  CAS  Google Scholar 

  19. deGans, B.-J., Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: state of the art and future developments. Adv. Mater. 16, 203–213 (2004).

    CAS  Google Scholar 

  20. Kong, Y. L. et al. 3D printed quantum dot light-emitting diodes. Nano Lett. 14, 7017–7023 (2014).

    ADS  CAS  PubMed  Google Scholar 

  21. Rim, Y. S., Bae, S. H., Chen, H., De Marco, N. & Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016).

    CAS  PubMed  Google Scholar 

  22. Kong, Y. L., Gupta, M. K., Johnson, B. N. & McAlpine, M. C. 3D printed bionic nanodevices. Nano Today 11, 330–350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, R. A. L. Soft Condensed Matter (Oxford Univ. Press, 2002).

    Google Scholar 

  24. Compton, B. G. & Lewis, J. A. 3D-printing of lightweight cellular composites. Adv. Mater. 26, 5930–5935 (2014).

    CAS  PubMed  Google Scholar 

  25. Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999). This paper lays the foundations for high-resolution 3D printing of soft materials.

    ADS  CAS  Google Scholar 

  26. Sun, C., Fang, N., Wu, D. M. & Zhang, X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A 121, 113–120 (2005).

    CAS  Google Scholar 

  27. Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015). This paper details a method for 3D printing of photopolymerizable resins at high speed.

    ADS  CAS  PubMed  Google Scholar 

  28. Hansen, C. J. et al. High-throughput printing via microvascular multinozzle arrays. Adv. Mater. 25, 96–102 (2013).

    CAS  PubMed  Google Scholar 

  29. Choi, J.-W., MacDonald, E. & Wicker, R. Multi-material microstereolithography. Int. J. Adv. Manuf. Technol. 49, 543–551 (2010).

    Google Scholar 

  30. Choi, J.-W., Kim, H.-C. & Wicker, R. Multi-material stereolithography. J. Mater. Process. Technol. 211, 318–328 (2011).

    CAS  Google Scholar 

  31. Hardin, J. O., Ober, T. J., Valentine, A. D. & Lewis, J. A. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks. Adv. Mater. 27, 3279–3284 (2015).

    CAS  PubMed  Google Scholar 

  32. Ober, T. J., Foresti, D. & Lewis, J. A. Active mixing of complex fluids at the microscale. Proc. Natl Acad. Sci. USA 112, 12293–12298 (2015).

    ADS  CAS  PubMed  Google Scholar 

  33. Frutiger, A. et al. Capacitive soft strain sensors via multicore-shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

    CAS  PubMed  Google Scholar 

  34. Kokkinis, D., Schaffner, M. & Studart, A. R. Multimaterial magnetically assisted 3D printing of composite materials. Nature Commun. 6, 8643 (2015).

    ADS  Google Scholar 

  35. Bartlett, N. W. et al. Robot powered by combustion. Science 349, 161–165 (2015). This paper highlights the ability to generate graded matrices for soft robots.

    ADS  CAS  PubMed  Google Scholar 

  36. Zheng, X. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).

    ADS  PubMed  Google Scholar 

  37. Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    ADS  CAS  PubMed  Google Scholar 

  38. Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    ADS  CAS  PubMed  Google Scholar 

  39. Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P. & Wegener, M. Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 5865–5870 (2016).

    CAS  PubMed  Google Scholar 

  40. Kinstlinger, I. S. et al. Open-source selective laser sintering (OpenSLS) of nylon and biocompatible polycaprolactone. PLoS ONE 11, e0147399 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Derby, B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010).

    ADS  CAS  Google Scholar 

  42. Fromm, J. E. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322–333 (1984).

    Google Scholar 

  43. Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    CAS  Google Scholar 

  44. Zein, I., Hutmacher, D. W., Tan, K. C. & Teoh, S. H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185 (2002).

    CAS  PubMed  Google Scholar 

  45. Farahani, R. D., Dubé, M. & Therriault, D. Three-dimensional printing of multifunctional nanocomposites: Manufacturing techniques and applications. Adv. Mater. 28, 5794–5821 (2016).

    CAS  PubMed  Google Scholar 

  46. Gratson, G. M., Xu, M. & Lewis, J. A. Direct writing of three-dimensional webs. Nature 428, 386 (2004).

    ADS  CAS  PubMed  Google Scholar 

  47. Clausen, A., Wang, F., Jensen, J. S., Sigmund, O. & Lewis, J. A. Topology optimized architectures with programmable Poisson's ratio over large deformations. Adv. Mater. 27, 5523–5527 (2015).

    CAS  PubMed  Google Scholar 

  48. Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).

    CAS  PubMed  Google Scholar 

  49. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nature Mater. 15, 413–418 (2016).

    ADS  Google Scholar 

  50. Therriault, D., Shepherd, R. F., White, S. R. & Lewis, J. A. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv. Mater. 17, 395–399 (2005).

    CAS  Google Scholar 

  51. Wu, W., Deconinck, A. & Lewis, J. A. Omnidirectional printing of 3D microvascular networks. Adv. Mater. 23, H178–H183 (2011).

    CAS  PubMed  Google Scholar 

  52. Herschel, W. H. & Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Kolloid Z. 39, 291–300 (1926).

    Google Scholar 

  53. Farahani, R. D., Lebel, L. L. & Therriault, D. Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet-assisted three-dimensional printing. J. Micromech. Microeng. 24, 055020 (2014).

    ADS  Google Scholar 

  54. Vidimce, K., Wang, S.-P., Ragan-Kelley, J. & Matusik, W. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 136 (2013).

    Google Scholar 

  55. Muth, J. T. et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014). The paper details a method to create soft strain sensors embedded in elastomeric matrices.

    CAS  PubMed  Google Scholar 

  56. Bhattacharjee, T. et al. Writing in the granular gel medium. Sci. Adv. 1, e1500655 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  57. Brackett, D., Ashcroft, I. & Hague, R. Topology optimization for additive manufacturing. In Solid Freeform Fabrication Symposium 348–362 (2011).

    Google Scholar 

  58. Lin, D. et al. Three-dimensional printing of complex structures: Man made or toward nature? ACS Nano 8, 9710–9715 (2014).

    CAS  PubMed  Google Scholar 

  59. Montemayor, L., Chernow, V. & Greer, J. R. Materials by design: Using architecture in material design to reach new property spaces. MRS Bull. 40, 1122–1129 (2015).

    ADS  Google Scholar 

  60. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nature Mater. 14, 23–36 (2015).

    ADS  CAS  Google Scholar 

  61. Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010).

    ADS  CAS  Google Scholar 

  62. Gibson, L. J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9, 2749–2766 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin, J. J., Fiore, B. E. & Erb, R. M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nature Commun. 6, 8641 (2015). doi:10.1038/ncomms9641 This paper demonstates the power of combining 3D printing with external magnetic fields to produce oriented composite architectures.

    ADS  Google Scholar 

  64. Dimas, L. S., Bratzel, G. H., Eylon, I. & Buehler, M. J. Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Adv. Funct. Mater. 23, 4629–4638 (2013).

    CAS  Google Scholar 

  65. Matsuzaki, R. et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6, 23058 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  66. Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    ADS  CAS  PubMed  Google Scholar 

  67. Duoss, E. B. et al. Three-dimensional printing of elastomeric, cellular architectures with negative stiffness. Adv. Funct. Mater. 24, 4905–4913 (2014).

    CAS  Google Scholar 

  68. Hu, J., Meng, H., Li, G. & Ibekwe, S. I. A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21, 053001 (2012).

    ADS  Google Scholar 

  69. Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646 (2014).

    ADS  CAS  PubMed  Google Scholar 

  70. Randall, C. L., Gultepe, E. & Gracias, D. H. Self-folding devices and materials for biomedical applications. Trends Biotechnol. 30, 138–146 (2012).

    CAS  PubMed  Google Scholar 

  71. Liu, Y., Boyles, J. K., Genzer, J. & Dickey, M. D. Self-folding of polymer sheets using local light absorption. Soft Matter 8, 1764–1769 (2012).

    ADS  CAS  Google Scholar 

  72. Tibbits, S. 4D printing: Multi-material shape change. Architect. Des. 84, 116–121 (2014). This paper describes the first embodiment of 4D printing.

    Google Scholar 

  73. Raviv, D. et al. Active printed materials for complex self-evolving deformations. Sci. Rep. 4, 7422 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ge, Q., Qi, H. J. & Dunn, M. L. Active materials by four-dimension printing. Appl. Phys. Lett. 103, 131901 (2013).

    ADS  Google Scholar 

  75. Ge, Q., Dunn, C. K., Qi, H. J. & Dunn, M. L. Active origami by 4D printing. Smart Mater. Struct. 23, 094007 (2014).

    ADS  Google Scholar 

  76. Mao, Y. et al. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 5, 13616 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  77. Mao, Y. et al. 3D printed reversible shape changing components with stimuli responsive materials. Sci. Rep. 6, 24761 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burgert, I. & Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Phil. Trans. R. Soc. A 367, 1541–1557 (2009).

    ADS  CAS  PubMed  Google Scholar 

  79. Guo, Q. et al. Fast nastic motion of plants and bioinspired structures. J. R. Soc. Interface 12, 20150598 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Edn Engl. 50, 1890–1895 (2011).

    CAS  Google Scholar 

  81. Bauer, S. et al. 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Adv. Mater. 26, 149–162 (2014).

    ADS  CAS  PubMed  Google Scholar 

  82. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    ADS  CAS  PubMed  Google Scholar 

  83. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnol. 6, 296–301 (2011).

    ADS  CAS  Google Scholar 

  84. Lu, N., Lu, C., Yang, S. & Rogers, J. Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Funct. Mater. 22, 4044–4050 (2012).

    CAS  Google Scholar 

  85. Lee, C., Jug, L. & Meng, E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett. 102, 183511 (2013).

    ADS  Google Scholar 

  86. Majidi, C., Kramer, R. & Wood, R. J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011).

    ADS  Google Scholar 

  87. Park, Y.-L., Chen, B. & Wood, R. J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors. IEEE Sens J. 12, 2711–2718 (2012).

    ADS  CAS  Google Scholar 

  88. Chossat, J. B., Park, Y.-L., Wood, R. J. & Duchaine, V. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13, 3405–3414 (2013).

    ADS  CAS  Google Scholar 

  89. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    ADS  CAS  PubMed  Google Scholar 

  90. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nature Commun. 6, 7461 (2015).

    ADS  CAS  Google Scholar 

  91. Boley, J. W., White, E. L., Chiu, G. T. C. & Kramer, R. K. Direct writing of gallium-indium alloy for stretchable electronics. Adv. Funct. Mater. 24, 3501–3507 (2014).

    CAS  Google Scholar 

  92. Lee, H., Xia, C. & Fang, N. X. First jump of microgel: actuation speed enhancement by elastic instability. Soft Matter 6, 4342–4345 (2010).

    ADS  CAS  Google Scholar 

  93. Palleau, E., Morales, D., Dickey, M. D. & Velev, O. D. Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Commun. 4, 2257 (2013).

    ADS  Google Scholar 

  94. Ionov, L. Biomimetic hydrogel-based actuating systems. Adv. Funct. Mater. 23, 4555–4570 (2013).

    CAS  Google Scholar 

  95. Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA 107, 18809–18814 (2010).

    ADS  CAS  Google Scholar 

  96. Anderson, I. A., Gisby, T. A., McKay, T. G., O'Brien, B. M. & Calius, E. P. Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112, 041101 (2012).

    ADS  Google Scholar 

  97. Suzumori, K. Elastic materials producing compliant robots. Rob. Auton. Syst. 18, 135–140 (1996).

    Google Scholar 

  98. Peele, B. N., Wallin, T. J., Zhao, H. & Shepherd, R. F. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir. Biomim. 10, 055003 (2015).

    PubMed  Google Scholar 

  99. Robinson, S. S. et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense. Extreme Mech. Lett. 5, 47–53 (2015).

    Google Scholar 

  100. MacCurdy, R., Katzschmann, R., Kim, Y. & Rus, D. Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids. Preprint at http://arxiv.org/abs/1512.03744 (2015).

  101. Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Raney, J. Muth and M. Skylar- Scott for their valuable insights, and the Wyss Institute for Biologically Inspired Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Lewis.

Ethics declarations

Competing interests

J.A.L. is a co-founder of Voxel8, Inc., a 3D-printing start-up company. J.A.L. and R.L.T. have filed patents on work related to the 3D printing of soft sensors and robots.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer information Nature thanks B. Derby and D. Therriault for their contributions to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truby, R., Lewis, J. Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21003

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing