Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin–orbit-coupled fermions in an optical lattice clock

Abstract

Engineered spin–orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena1,2,3,4,5,6,7,8. However, spontaneous emission in alkali-atom spin–orbit-coupled systems is hindered by heating, limiting the observation of many-body effects1,2,5 and motivating research into potential alternatives9,10,11. Here we demonstrate that spin–orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock12. In contrast to previous SOC experiments1,2,3,4,5,6,7,8,9,10,11, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin–orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin–momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin–orbit-coupled fermions in an optical lattice clock with tunable tunnelling.
Figure 2: Van Hove singularities and band mapping.
Figure 3: Bloch oscillations.
Figure 4: Rabi measurements of the chiral Bloch vector.

Similar content being viewed by others

References

  1. Dalibard, J., Gerbier, F., Juzeliūnas, G. & Öhberg, P. Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011)

    Article  CAS  ADS  Google Scholar 

  2. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014)

    Article  CAS  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  CAS  ADS  Google Scholar 

  4. Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature 494, 49–54 (2013)

    Article  CAS  ADS  Google Scholar 

  5. Zhai, H. Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Stuhl, B., Lu, H.-I., Aycock, L., Genkina, D. & Spielman, I. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  7. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  8. Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014)

    Article  CAS  Google Scholar 

  9. Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin–orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016)

    Google Scholar 

  10. Song, B. et al. Spin–orbit coupled two-electron Fermi gases of ytterbium atoms. Preprint at https://arxiv.org/abs/1608.00478 (2016)

  11. Li, J. et al. Spin–orbit coupling and spin textures in optical superlattices. Phys. Rev. Lett. 117, 185301 (2016)

    Article  ADS  Google Scholar 

  12. Wall, M. L. et al. Synthetic spin–orbit coupling in an optical lattice clock. Phys. Rev. Lett. 116, 035301 (2016)

    Article  ADS  Google Scholar 

  13. Bloom, B. J. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014)

    Article  CAS  ADS  Google Scholar 

  14. Hügel, D. & Paredes, B. Chiral ladders and the edges of quantum Hall insulators. Phys. Rev. A 89, 023619 (2014)

    Article  ADS  Google Scholar 

  15. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013)

    Article  CAS  ADS  Google Scholar 

  16. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  17. Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014)

    Article  CAS  ADS  Google Scholar 

  18. Barbarino, S., Taddia, L., Rossini, D., Mazza, L. & Fazio, R. Magnetic crystals and helical liquids in alkaline-earth fermionic gases. Nat. Commun. 6, 8134 (2015)

    Article  ADS  Google Scholar 

  19. Martin, M. J. et al. A quantum many-body spin system in an optical lattice clock. Science 341, 632–636 (2013)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  20. Blatt, S. et al. Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock. Phys. Rev. A 80, 052703 (2009)

    Article  ADS  Google Scholar 

  21. Lemonde, P. & Wolf, P. Optical lattice clock with atoms confined in a shallow trap. Phys. Rev. A 72, 033409 (2005)

    Article  ADS  Google Scholar 

  22. Van Hove, L. The occurrence of singularities in the elastic frequency distribution of a crystal. Phys. Rev. 89, 1189–1193 (1953)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  23. Kim, P., Odom, T. W., Huang, J.-L. & Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 82, 1225–1228 (1999)

    Article  CAS  ADS  Google Scholar 

  24. Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996)

    Article  CAS  ADS  Google Scholar 

  25. Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015)

    Article  CAS  ADS  MathSciNet  Google Scholar 

  26. Isaev, L., Schachenmayer, J. & Rey, A. Spin–orbit-coupled correlated metal phase in Kondo lattices: an implementation with alkaline-earth atoms. Phys. Rev. Lett. 117, 135302 (2016)

    Article  CAS  ADS  Google Scholar 

  27. Zhang, X. et al. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science 345, 1467–1473 (2014)

    Article  CAS  ADS  Google Scholar 

  28. Livi, L. F. et al. Synthetic dimensions and spin–orbit coupling with an optical clock transition. Phys. Rev. Lett. 117, 220401 (2016)

    Article  CAS  ADS  Google Scholar 

  29. An, F. A., Meier, E. J. & Gadway, B. Direct observation of chiral currents and magnetic reflection in atomic flux lattices. Preprint at https://arxiv.org/abs/1609.09467 (2016)

  30. Lignier, H. et al. Dynamical control of matter-wave tunnelling in periodic potentials. Phys. Rev. Lett. 99, 220403 (2007)

    Article  CAS  ADS  Google Scholar 

  31. Parker, C. V., Ha, L.-C. & Chin, C. Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nat. Phys. 9, 769–774 (2013)

    Article  CAS  Google Scholar 

  32. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014)

    Article  CAS  ADS  Google Scholar 

  33. Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016)

    Article  ADS  Google Scholar 

  34. Müller, T., Fölling, S., Widera, A. & Bloch, I. State preparation and dynamics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett. 99, 200405 (2007)

    Article  ADS  Google Scholar 

  35. Spielman, I. B. et al. Collisional deexcitation in a quasi-two-dimensional degenerate bosonic gas. Phys. Rev. A 73, 020702 (2006)

    Article  ADS  Google Scholar 

  36. Bishof, M. et al. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock. Phys. Rev. A 84, 052716 (2011)

    Article  ADS  Google Scholar 

  37. Martin, M. J. Quantum Metrology and Many-body Physics: Pushing the Frontier of the Optical Lattice Clock. PhD thesis, Univ. Colorado, Boulder (2013)

  38. Wall, M. L., Hazzard, K. R. A. & Rey, A. M. Effective many-body parameters for atoms in nonseperable Gaussian optical potentials. Phys. Rev. A 92, 013610 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. R. Cooper for insights and discussions, and S. L. Campbell, N. Darkwah Oppong, A. Goban, R. B. Hutson, D. X. Reed, J. Robinson, L. Sonderhouse and W. Zhang for technical contributions and discussions. This research is supported by NIST, the NSF Physics Frontier Center at JILA (NSF-PFC-1125844), AFOSR-MURI, AFOSR, DARPA and ARO. S.K., M.L.W. and G.E.M. acknowledge the NRC postdoctoral fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

S.K., S.L.B., T.B., G.E.M., X.Z. and J.Y. contributed to the experiments. M.L.W., A.P.K. and A.M.R. contributed to the development of the theoretical model. All authors discussed the results, contributed to the data analysis and worked together on the manuscript.

Corresponding authors

Correspondence to S. Kolkowitz or S. L. Bromley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks L. Duan and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Bloch band preparation and spectroscopy.

a, Spectroscopy of atoms prepared in |g0 reveals the band spacing of the lattice, with inter-band transitions colour-coded by the final band. b, Spectroscopy of atoms in |e1, prepared by driving the |g0 → |e1 transition shown in a and then removing any remaining atoms in |g〉. The spectrum for atoms in |e0 from Fig. 1d is shown for comparison (dashed grey line).

Extended Data Figure 2 Rabi line shape modelling.

ae, Theoretical modelling of carrier line shapes starting from the |g0 (ac) or |e1 (d, e) state. For the ground band transitions (ac), all data were taken using a π pulse, and are well reproduced by a perturbative model (solid lines). Three specific cases are shown covering from the deep-lattice regime (Uz ≈ 65Er; a) to the moderate-lattice regime (Uz ≈ 10Er; b), and down to the shallow-lattice limit (Uz ≈ 3Er; c). For the first excited band transitions, the data in the deeper-lattice case (Uz ≈ 21.3Er), taken with a π pulse, are well reproduced by the perturbative model (d). However, for the case of Uz ≈ 16Er where a longer pulse was used, the perturbative theory, which ignores radial sideband transitions induced by the laser, captures only the width of the line shape and not its amplitude (e).

Extended Data Figure 3 Modelling of quasi-momentum selection.

Theoretical probability distribution P(q, nr) of quasi-momentum and radial quantum number nr of |e〉 excitations resulting from exciting a thermal distribution in |g〉 with a 50-ms π pulse. The lattice depth is Uz ≈ 16Er, resulting in a tunnelling rate of J ≈ 17 Hz. The distribution of atoms among q is broadened owing to the fact that the Rabi frequency and tunnelling rates are comparable, but can be made narrower by decreasing the Rabi frequency.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolkowitz, S., Bromley, S., Bothwell, T. et al. Spin–orbit-coupled fermions in an optical lattice clock. Nature 542, 66–70 (2017). https://doi.org/10.1038/nature20811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20811

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing