Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genomic evolution and chemoresistance in germ-cell tumours


Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes1,2. GCTs are histologically heterogeneous and distinctly curable with chemotherapy3. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs4,5,6, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue7, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1)8,9 in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational landscape and evolution from precursor lesions.
Figure 2: RLOH in GCTs.
Figure 3: Mitochondrial priming in germ cell tumours.
Figure 4: Phylogenetic analysis and pluripotency of primary and metastatic GCTs.


  1. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Sonne, S. B. et al. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res. 69, 5241–5250 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanna, N. H. & Einhorn, L. H. Testicular cancer—discoveries and updates. N. Engl. J. Med. 371, 2005–2016 (2014)

    Article  PubMed  CAS  Google Scholar 

  4. Atkin, N. B. & Baker, M. C. Specific chromosome change, i(12p), in testicular tumours? Lancet 2, 1349 (1982)

    Article  CAS  PubMed  Google Scholar 

  5. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 6, 5973 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Oosterhuis, J. W. et al. Ploidy of primary germ cell tumors of the testis. Pathogenetic and clinical relevance. Lab. Invest. 60, 14–21 (1989)

    CAS  PubMed  Google Scholar 

  7. Montero, J. et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 160, 977–989 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Looijenga, L. H. et al. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 63, 2244–2250 (2003)

    CAS  PubMed  Google Scholar 

  9. Hart, A. H. et al. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer 104, 2092–2098 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016)

    Article  PubMed  Google Scholar 

  11. Gutekunst, M. et al. Cisplatin hypersensitivity of testicular germ cell tumors is determined by high constitutive Noxa levels mediated by Oct-4. Cancer Res. 73, 1460–1469 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Jacobsen, C. & Honecker, F. Cisplatin resistance in germ cell tumours: models and mechanisms. Andrology 3, 111–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. Rijlaarsdam, M. A. & Looijenga, L. H. An oncofetal and developmental perspective on testicular germ cell cancer. Semin. Cancer Biol. 29, 59–74 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Rapley, E. A. et al. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41, 807–810 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kanetsky, P. A. et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat. Genet. 41, 811–815 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feldman, D. R. et al. Presence of somatic mutations within PIK3CA, AKT, RAS, and FGFR3 but not BRAF in cisplatin-resistant germ cell tumors. Clinical Cancer Res. 20, 3712–3720 (2014)

    Article  CAS  Google Scholar 

  17. Stachler, M. D. et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat. Genet. 47, 1047–1055 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brastianos, P. K. et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164–1177 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Goudarzi, K. M. & Lindström, M. S. Role of ribosomal protein mutations in tumor development (Review). Int. J. Oncol. 48, 1313–1324 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. Novel somatic and germline mutations in intracranial germ cell tumours. Nature 511, 241–245 (2014)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baker, D. E. et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat. Biotechnol. 25, 207–215 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Närvä, E. et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat. Biotechnol. 28, 371–377 (2010)

    Article  PubMed  CAS  Google Scholar 

  26. Liu, J. C. et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13, 483–491 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Abada, P. B. & Howell, S. B. Cisplatin induces resistance by triggering differentiation of testicular embryonal carcinoma cells. PLoS One 9, e87444 (2014)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  29. Wermann, H. et al. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance. J. Pathol. 221, 433–442 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Jørgensen, A. et al. Dysregulation of the mitosis-meiosis switch in testicular carcinoma in situ. J. Pathol. 229, 588–598 (2013)

    Article  PubMed  CAS  Google Scholar 

  31. Hoffman, H. violin.m — Simple violin plot using Matlab default kernel estimation. INRES (Univ. of Bonn, 2015)

  32. Van Allen, E. M. et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 20, 682–688 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saunders, C. T. et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 28, 1811–1817 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013)

    Article  PubMed  CAS  Google Scholar 

  40. Olshen, A. B., Venkatraman, E. S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004)

    Article  PubMed  MATH  Google Scholar 

  41. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Touzeau, C. et al. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia 30, 761–764 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references


We thank the patients for contributing to this study, and H.Taylor-Weiner for feedback on ES cells. This work was supported by NIH U54 HG003067, NIH 1K08 CA188615 (E.M.V.), Damon Runyon Clinical Investigator Award (E.M.V.), Shawmut Design and Construction Pan Mass Challenge Team (C.S.), and Giovino Jimmy Fund Golf Tournament (C.S.).

Author information

Authors and Affiliations



A.T.-W., T.Z., B.B., G.C.H., S.A., A.A.-M. and E.M.V. performed genomic analysis of discovery cohort. A.T.-W., T.Z., B.B., E.O., M.H., C.S. and E.M.V performed clinical integration and analysis. J.L.G. and A.L. performed BH3 profiling experiments. S.S., S.L.C., R.B. and G.G. contributed methodology and analysis review. A.R. and E.M.V. performed biological review of genomic findings. S.G. performed sequencing assays. A.T.-W., T.Z., K.L., C.T. and E.M.V. performed genomic analysis of validation cohort. M.H. performed pathology and histological evaluation of clinical samples. A.T.-W., T.Z., B.B., C.S. and E.M.V. prepared manuscript and figures.

Corresponding author

Correspondence to Eliezer M Van Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks K. Nathanson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Mutational significance and copy number meta-analysis.

a, Mutational significance meta-analysis of discovery and ICR cohorts identify KRAS, KIT and RPL5 as significantly mutated in TGCT, with a spectrum of mutation rates. In this plot, each column represents a patient WES. Asterisk denotes the hypermutated PMGCT (DFCI_17). b, RLOH distribution by histology in discovery cohort. c, RLOH distribution by histology in ICR cohort. d, RLOH distribution in the meta-analysis, consistent with both subsets.

Extended Data Figure 2 Genomic reads for KRAS loci in two patient cases.

a, Integrative genomics viewer snapshot of KRAS p.G12A mutation in DFCI_55 GCNIS and seminoma. The mutation is present in the primary tumour but absent from the GCNIS. b, Integrative genomics viewer snapshot of KRAS p.G12A mutation in DFCI_61 GCNIS and seminoma. The mutation is present in the primary tumour but absent from the GCNIS.

Extended Data Figure 3 Allelic copy number heat map of the discovery cohort.

Each tumour sample is a row, and chromosomes are listed as columns. Blue regions note deletions, and red regions denote amplifications.

Extended Data Figure 4 Testes tumours of different cell types.

Allelic copy number data from testes tumours of different cell types are shown. These three tumours do not contain the same level of arm level chromosomal events as GCTs.

Extended Data Figure 5 Phylogenetic analysis of DFCI_4.

Histology proportion is indicated by pie charts within each phylogenetic tree. Phylogenetic trees were constructed using allelic copy number deconstructions. Branch lengths are proportional to the number of deconstructed copy number events. Branches leading to primary samples are red, and branches leading to metastases are purple. The dotted branch indicates deconstructions which may be impacted by FFPE sample degradation, limiting discrete branch length estimation.

Supplementary information

Supplementary Table 1

Clinical and genomic overview of GCT cohort. This table lists histological subclass, vital status, mutation load, and location of the primary and initially sequenced metastases shown in figure 1. (XLSX 45 kb)

Supplementary Table 2

Summary clinical data. This table lists aggregate summary phenotypic data, including therapies and response, for this cohort. (XLSX 10 kb)

Supplementary Table 3

Mutation significance analysis. Table of significant (q < 0.2) genes uncovered with MutSigCV run on the discovery cohort. (XLSX 34 kb)

Supplementary Table 4

Mutation data for all samples. All mutations and small insertions and deletions called in this cohort. (XLSX 486 kb)

Supplementary Table 5

ABSOLUTE allelic segmented copy-number data. Allelic copy number data used to perform deconstructions and construct phylogenetic trees. (TXT 1236 kb)

Supplementary Table 6

ABSOLUTE purity and ploidy solutions. This table lists purity, ploidy and genome doubling status of each tumor as assessed by ABSOLUTE. (XLS 21 kb)

Supplementary Table 7

Gene expression data. This table has transcript per million expression values by sample for TP53, NANOG and POU5F1. (XLSX 46 kb)

Supplementary Table 8

Detailed clinical annotations for multi-regional sampling subset. This table lists treatment regimen, location, and histological subtype of each sample in figure 4. (XLSX 36 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taylor-Weiner, A., Zack, T., O’Donnell, E. et al. Genomic evolution and chemoresistance in germ-cell tumours. Nature 540, 114–118 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer