Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem cells and interspecies chimaeras

Abstract

Chimaeras are both monsters of the ancient imagination and a long-established research tool. Recent advances, particularly those dealing with the identification and generation of various kinds of stem cells, have broadened the repertoire and utility of mammalian interspecies chimaeras and carved out new paths towards understanding fundamental biology as well as potential clinical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Chimaeras generated from cultured stem cells.
Figure 2: Strategies to improve interspecies chimaerism with human stem cells.
Figure 3: Potential application of interspecies chimaeras with human stem cells.

References

  1. 1

    Ito, R., Takahashi, T., Katano, I. & Ito, M. Current advances in humanized mouse models. Cell. Mol. Immunol. 9, 208–214 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Le Douarin, N. M. The ontogeny of the neural crest in avian embryo chimaeras. Nature 286, 663–669 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. 3

    Douarin, N. L. & Kalcheim, C. The Neural Crest (Cambridge Univ. Press, 1982)

  4. 4

    Gardner, R. L. & Johnson, M. H. Investigation of early mammalian development using interspecific chimaeras between rat and mouse. Nature 246, 86–89 (1973)

    Article  CAS  Google Scholar 

  5. 5

    Rossant, J. & Frels, W. I. Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science 208, 419–421 (1980). A pioneering study reporting the first viable interspecies chimaeras generated by injection of M. caroli ICMs into M. musculus blastocysts

    Article  ADS  CAS  PubMed  Google Scholar 

  6. 6

    Rossant, J., Vijh, M., Siracusa, L. D. & Chapman, V. M. Identification of embryonic cell lineages in histological sections of M. musculus in-equilibrium M. caroli chimaeras. J. Embryol. Exp. Morphol. 73, 179–191 (1983)

    CAS  PubMed  Google Scholar 

  7. 7

    Fehilly, C. B., Willadsen, S. M. & Tucker, E. M. Interspecific chimaerism between sheep and goat. Nature 307, 634–636 (1984)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. 8

    Williams, T. J., Munro, R. K. & Shelton, J. N. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reprod. Fertil. Dev. 2, 385–394 (1990)

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Rossant, J., Croy, B. A., Chapman, V. M., Siracusa, L. & Clark, D. A. Interspecific chimeras in mammals: a new experimental system. J. Anim. Sci. 55, 1241–1248 (1982)

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Rossant, J., Mauro, V. M. & Croy, B. A. Importance of trophoblast genotype for survival of interspecific murine chimeras. J. Embryol. Exp. Morphol. 69, 141–149 (1982)

    CAS  PubMed  Google Scholar 

  11. 11

    Wu, J. & Izpisua Belmonte, J. C. Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Xiang, A. P. et al. Extensive contribution of embryonic stem cells to the development of an evolutionarily divergent host. Hum. Mol. Genet. 17, 27–37 (2008). The first study reporting PS-cell-derived viable interspecies chimaeras between two distant rodent species

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Han, X. et al. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008). A landmark paper describing the pluripotent ground state and how the ground state culture ultimately enabled derivation of genuine ES cells from rat blastocysts (see also refs 15, 16)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Buehr, M. et al. Capture of authentic embryonic stem cells from rat blastocysts. Cell 135, 1287–1298 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Li, P. et al. Germline competent embryonic stem cells derived from rat blastocysts. Cell 135, 1299–1310 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Kobayashi, T. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142, 787–799 (2010). A landmark paper reporting PS-cell-derived viable mouse–rat interspecies chimaeras and demonstrating the first proof-of-concept of interspecies blastocyst complementation

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Isotani, A., Hatayama, H., Kaseda, K., Ikawa, M. & Okabe, M. Formation of a thymus from rat ES cells in xenogeneic nude mouse↔rat ES chimeras. Genes Cells 16, 397–405 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. 19

    Thomson, J. A. et al. Isolation of a primate embryonic stem cell line. Proc. Natl Acad. Sci. USA 92, 7844–7848 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. 20

    Sasaki, E. et al. Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23, 1304–1313 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Simerly, C. R. et al. Establishment and characterization of baboon embryonic stem cell lines: an Old World Primate model for regeneration and transplantation research. Stem Cell Res. (Amst.) 2, 178–187 (2009)

    Article  CAS  Google Scholar 

  22. 22

    Thomson, J. A. et al. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55, 254–259 (1996)

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. 24

    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Tachibana, M. et al. Generation of chimeric rhesus monkeys. Cell 148, 285–295 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Simerly, C. et al. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res. (Amst.) 7, 28–40 (2011)

    Article  CAS  Google Scholar 

  27. 27

    James, D., Noggle, S. A., Swigut, T. & Brivanlou, A. H. Contribution of human embryonic stem cells to mouse blastocysts. Dev. Biol. 295, 90–102 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Nichols, J. & Smith, A. Naive and primed pluripotent states. Cell Stem Cell 4, 487–492 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Boroviak, T., Loos, R., Bertone, P., Smith, A. & Nichols, J. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16, 516–528 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Brons, I. G. M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Huang, Y., Osorno, R., Tsakiridis, A. & Wilson, V. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Reports 2, 1571–1578 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Kojima, Y. et al. The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak. Cell Stem Cell 14, 107–120 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Wu, J. et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature 521, 316–321 (2015)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Mascetti, V. L. & Pedersen, R. A. Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell 18, 67–72 (2016). Refs 34, 35 are two pioneering studies that demonstrated functional engraftment of primed human PS cells into gastrula-stage mouse embryos

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Wu, J. & Izpisua Belmonte, J. C. Stem cells: a renaissance in human biology research. Cell 165, 1572–1585 (2016)

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Mascetti, V. L. & Pedersen, R. A. Contributions of mammalian chimeras to pluripotent stem cell research. Cell Stem Cell 19, 163–175 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Hanna, J. et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl Acad. Sci. USA 107, 9222–9227 (2010). A pioneering study demonstrating that a naive human pluripotent state, resembling that of mouse ES cells, could be stabilized in culture

    Article  ADS  CAS  PubMed  Google Scholar 

  39. 39

    Chan, Y.-S. et al. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675 (2013). Refs 39, 41, 42, 43, 46 are examples of the first studies describing different culture conditions for naive human ES cells

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Duggal, G. et al. Alternative routes to induce naïve pluripotency in human embryonic stem cells. Stem Cells 33, 2686–2698 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Gafni, O. et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  42. 42

    Takashima, Y. et al. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158, 1254–1269 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Theunissen, T. W. et al. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  46. 46

    Ware, C. B. et al. Derivation of naive human embryonic stem cells. Proc. Natl Acad. Sci. USA 111, 4484–4489 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  47. 47

    Guo, G. et al. Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep. 6, 437–446 (2016)

    Article  CAS  Google Scholar 

  48. 48

    Pera, M. F. In search of naivety. Cell Stem Cell 15, 543–545 (2014)

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Huang, K., Maruyama, T. & Fan, G. The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 15, 410–415 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Masaki, H. et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development 142, 3222–3230 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Chen, Y. et al. Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17, 116–124 (2015)

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Fang, R. et al. Generation of naive induced pluripotent stem cells from rhesus monkey fibroblasts. Cell Stem Cell 15, 488–496 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Dupin, E. & Sommer, L. Neural crest progenitors and stem cells: from early development to adulthood. Dev. Biol. 366, 83–95 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Jaenisch, R. Mammalian neural crest cells participate in normal embryonic development on microinjection into post-implantation mouse embryos. Nature 318, 181–183 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. 55

    Huszar, D., Sharpe, A. & Jaenisch, R. Migration and proliferation of cultured neural crest cells in W mutant neural crest chimeras. Development 112, 131–141 (1991)

    CAS  PubMed  Google Scholar 

  56. 56

    Cohen, M. A. et al. Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proc. Natl Acad. Sci. USA 113, 1570–1575 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. 57

    Brüstle, O. et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 16, 1040–1044 (1998)

    Article  PubMed  Google Scholar 

  58. 58

    Keyoung, H. M. et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Goyama, S., Wunderlich, M. & Mulloy, J. C. Xenograft models for normal and malignant stem cells. Blood 125, 2630–2640 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Zanjani, E. D., Almeida-Porada, G., Livingston, A. G., Flake, A. W. & Ogawa, M. Human bone marrow CD34 cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp. Hematol. 26, 353–360 (1998)

    CAS  PubMed  Google Scholar 

  61. 61

    Fujiki, Y. et al. Successful multilineage engraftment of human cord blood cells in pigs after in utero transplantation. Transplantation 75, 916–922 (2003)

    Article  PubMed  Google Scholar 

  62. 62

    Muotri, A. R., Nakashima, K., Toni, N., Sandler, V. M. & Gage, F. H. Development of functional human embryonic stem cell-derived neurons in mouse brain. Proc. Natl Acad. Sci. USA 102, 18644–18648 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  63. 63

    Chuma, S. et al. Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development 132, 117–122 (2005)

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Leitch, H. G. et al. On the fate of primordial germ cells injected into early mouse embryos. Dev. Biol. 385, 155–159 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  66. 66

    Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Geiger, H., Sick, S., Bonifer, C. & Müller, A. M. Globin gene expression is reprogrammed in chimeras generated by injecting adult hematopoietic stem cells into mouse blastocysts. Cell 93, 1055–1065 (1998)

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Harder, F., Henschler, R., Junghahn, I., Lamers, M. C. & Müller, A. M. Human hematopoiesis in murine embryos after injecting human cord blood-derived hematopoietic stem cells into murine blastocysts. Blood 99, 719–721 (2002)

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006)

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Brinster, R. L. & Zimmermann, J. W. Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11298–11302 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. 71

    Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S. & Saitou, M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532 (2011)

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975)

    Article  CAS  PubMed  Google Scholar 

  73. 73

    Amoyel, M. & Bach, E. A. Cell competition: how to eliminate your neighbours. Development 141, 988–1000 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Dejosez, M., Ura, H., Brandt, V. L. & Zwaka, T. P. Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen. Science 341, 1511–1514 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  75. 75

    Masaki, H. et al. Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell 19, 587–592 (2016)

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).This landmark study established that somatic cells could be induced to PS cells by defined transcription factors

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Usui, J. et al. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 180, 2417–2426 (2012)

    Article  CAS  PubMed  Google Scholar 

  78. 78

    Matsunari, H. et al. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc. Natl Acad. Sci. USA 110, 4557–4562 (2013)

    Article  ADS  PubMed  Google Scholar 

  79. 79

    Rashid, T., Kobayashi, T. & Nakauchi, H. Revisiting the flight of Icarus: making human organs from PS cells with large animal chimeras. Cell Stem Cell 15, 406–409 (2014)

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Kobayashi, T., Kato-Itoh, M. & Nakauchi, H. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cells Dev. 24, 182–189 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Li, Z. et al. 3D culture supports long-term expansion of mouse and human nephrogenic progenitors. Cell Stem Cell 19, 516–529 (2016)

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Kuehn, M. R., Bradley, A., Robertson, E. J. & Evans, M. J. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature 326, 295–298 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. 83

    Sen, S. Brownback. The Human Chimera Prohibition Act of 2005, S.659 (109th Congress, 2005–2006)

  84. 84

    Greely, H. T., Cho, M. K., Hogle, L. F. & Satz, D. M. Thinking about the human neuron mouse. Am. J. Bioeth. 7, 27–40 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Hyun, I. et al. Ethical standards for human-to-animal chimera experiments in stem cell research. Cell Stem Cell 1, 159–163 (2007)

    Article  PubMed  Google Scholar 

  86. 86

    Hermerén, G. Ethical considerations in chimera research. Development 142, 3–5 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Hyun, I. From naïve pluripotency to chimeras: a new ethical challenge? Development 142, 6–8 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Robert, J. S. & Baylis, F. Crossing species boundaries. Am. J. Bioeth. 3, 1–13 (2003)

    Article  PubMed  Google Scholar 

  89. 89

    Karpowicz, P., Cohen, C. B. & van der Kooy, D. It is ethical to transplant human stem cells into nonhuman embryos. Nat. Med. 10, 331–335 (2004)

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Karpowicz, P., Cohen, C. B. & van der Kooy, D. Developing human-nonhuman chimeras in human stem cell research: ethical issues and boundaries. Kennedy Inst. Ethics J. 15, 107–134 (2005)

    Article  PubMed  Google Scholar 

  91. 91

    Streiffer, R. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N. ) http://plato.stanford.edu/entries/chimeras/ (2009)

  92. 92

    Greely, H. T. in Oxford Handbook of Animal Ethics (eds Beauchamp, T. & Frey, R.G. ) (Oxford Univ. Press, 2011)

  93. 93

    Johnston, J. & Eliot, C. Chimeras and “human dignity”. Am. J. Bioeth. 3, W6–W8 (2003)

    Article  PubMed  Google Scholar 

  94. 94

    Palacios-González, C. Human dignity and the creation of human–nonhuman chimeras. Med. Health Care Philos. 18, 487–499 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95

    United States National Institutes of Health. Special Notice: Moratorium on Certain Fetal Tissue Research. NIH Guide for Grants and Contracts. (Special notice, 8 May 1988)

  96. 96

    United States National Institutes of Health Revitalization Act of 1993 Public Law 103-43 (1993)

  97. 97

    Sherley v. Sebelius, 689 F.3d 776 (D.C. Circuit 2012)

  98. 98

    Committee on Guidelines for Human Embryonic Stem Cell Research. Guidelines for Human Embryonic Stem Cell Research (National Academies Press, 2005)

  99. 99

    International Society for Stem Cell Research. Guidelines for the Conduct of Human Embryonic Stem Cell Researchhttp://www.isscr.org/home/publications/guide-clintrans (2006)

  100. 100

    International Society for Stem Cell Research. Guidelines for Stem Cell Science and Clinical Translationhttp://www.isscr.org/home/publications/2016-guidelines (2016)

  101. 101

    Academy of Medical Sciences. Animals Containing Human Materialshttps://issuu.com/acmedsci/docs/animals_containing_human_material. (2011)

  102. 102

    Greene, M. et al. Ethics: moral issues of human-non-human primate neural grafting. Science 309, 385–386 (2005)

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Palacios-González, C. Ethical aspects of creating human-nonhuman chimeras capable of human gamete production and human pregnancy. Monash Bioeth. Rev. 33, 181–202 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    United States National Institutes of Health. NIH Research Involving Introduction of Human Pluripotent Cells into Non-Human Vertebrate Animal Pre-Gastrulation Embryos. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html (2015)

  105. 105

    United States National Institutes of Health. Next Steps on Research Using Animal Embryos Containing Human Cells. http://osp.od.nih.gov/under-the-poliscope/2016/08/next-steps-research-using-animal-embryos-containing-human-cells (2016)

  106. 106

    Reardon, S. US agency to lift ban on funding human–animal hybrids. Nature 536, 135 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all our laboratory members and collaborators, including the teams of J. M. Campistol, P. Guillen, E. Martinez and P. Ross for their comments and dedicated work that have greatly contributed to the ideas presented here. H.N. was supported by the California Institute of Regenerative Medicine (CIRM), Japan Agency for Medical Research and Development (AMED) and Takeda Pharmaceuticals International, Inc. J.C.I.B. was supported by the G. Harold and Leila Y. Mathers Charitable Foundation, The Moxie Foundation, Fundación Dr. Pedro Guillen and UCAM. R.J. was supported by grants from the NIH (HD 045022, R37-CA084198, 1R01NS088538-01).

Author information

Affiliations

Authors

Contributions

J.W., H.G., R.J., H.N., J.R. and J.C.I.B conceived the study and wrote the manuscript.

Corresponding author

Correspondence to Juan Carlos Izpisua Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks S. Goldman, I. Hyun and M. A. Surani for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, J., Greely, H., Jaenisch, R. et al. Stem cells and interspecies chimaeras. Nature 540, 51–59 (2016). https://doi.org/10.1038/nature20573

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing