Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A massive, quiescent, population II galaxy at a redshift of 2.1


Unlike spiral galaxies such as the Milky Way, the majority of the stars in massive elliptical galaxies were formed in a short period early in the history of the Universe. The duration of this formation period can be measured using the ratio of magnesium to iron abundance ([Mg/Fe]) in spectra1,2,3,4, which reflects the relative enrichment by core-collapse and type Ia supernovae. For local galaxies, [Mg/Fe] probes the combined formation history of all stars currently in the galaxy, including younger and metal-poor stars that were added during late-time mergers5. Therefore, to directly constrain the initial star-formation period, we must study galaxies at earlier epochs. The most distant galaxy for which [Mg/Fe] had previously been measured6 is at a redshift of z ≈ 1.4, with [Mg/Fe] = . A slightly earlier epoch (z ≈ 1.6) was probed by combining the spectra of 24 massive quiescent galaxies, yielding an average [Mg/Fe] = 0.31 ± 0.12 (ref. 7). However, the relatively low signal-to-noise ratio of the data and the use of index analysis techniques for both of these studies resulted in measurement errors that are too large to allow us to form strong conclusions. Deeper spectra at even earlier epochs in combination with analysis techniques based on full spectral fitting are required to precisely measure the abundance pattern shortly after the major star-forming phase (z > 2). Here we report a measurement of [Mg/Fe] for a massive quiescent galaxy at a redshift of z = 2.1, when the Universe was three billion years old. With [Mg/Fe] = 0.59 ± 0.11, this galaxy is the most Mg-enhanced massive galaxy found so far, having twice the Mg enhancement of similar-mass galaxies today. The abundance pattern of the galaxy is consistent with enrichment exclusively by core-collapse supernovae and with a star-formation timescale of 0.1 to 0.5 billion years—characteristics that are similar to population II stars in the Milky Way. With an average past star-formation rate of 600 to 3,000 solar masses per year, this galaxy was among the most vigorous star-forming galaxies in the Universe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photometry, image and MOSFIRE spectrum of COSMOS-11494.
Figure 2: Age and abundance patterns of COSMOS-11494 in comparison to lower-redshift quiescent galaxies.
Figure 3: Abundance pattern of COSMOS-11494 in comparison to other high-redshift galaxies.


  1. Matteucci, F. Abundance ratios in ellipticals and galaxy formation. Astron. Astrophys. 288, 57–64 (1994)

    ADS  CAS  Google Scholar 

  2. Trager, S. C., Faber, S. M., Worthey, G. & González, J. J. The stellar population histories of early-type galaxies. II. Controlling parameters of the stellar populations. Astron. J. 120, 165–188 (2000)

    Article  ADS  CAS  Google Scholar 

  3. Thomas, D., Maraston, C., Bender, R. & Mendes de Oliveira, C. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Conroy, C., Graves, G. J. & van Dokkum, P. G. Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2014)

    Article  ADS  Google Scholar 

  5. van Dokkum, P. G. et al. The growth of massive galaxies since z = 2. Astrophys. J. 709, 1018–1041 (2010)

    Article  ADS  Google Scholar 

  6. Lonoce, I. et al. Old age and supersolar metallicity in a massive z ~ 1.4 early-type galaxy from VLT/X-Shooter spectroscopy. Mon. Not. R. Astron. Soc. 454, 3912–3919 (2015)

    Article  ADS  CAS  Google Scholar 

  7. Onodera, M. et al. The ages, metallicities, and element abundance ratios of massive quenched galaxies at z 1.6. Astrophys. J. 808, 161 (2015)

    Article  ADS  Google Scholar 

  8. McLean, I. S. et al. MOSFIRE, the multi-object spectrometer for infra-red exploration at the Keck Observatory. Proc. SPIE 8446, 84460J (2012)

    Article  Google Scholar 

  9. Belli, S., Newman, A. B., Ellis, R. S. & Konidaris, N. P. MOSFIRE absorption line spectroscopy of z > 2 quiescent galaxies: probing a period of rapid size growth. Astrophys. J. 788, L29 (2014)

    Article  ADS  Google Scholar 

  10. Kriek, M. et al. The MOSFIRE Deep Evolution Field (MOSDEF) survey: rest-frame optical spectroscopy for ~1500 H-selected galaxies at 1.37 ≤ z ≤ 3.8. Astrophys. J. Suppl. Ser. 218, 15 (2015)

    Article  ADS  Google Scholar 

  11. Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J. Suppl. Ser. 214, 24 (2014)

    Article  ADS  Google Scholar 

  12. Momcheva, I. G. et al. The 3D-HST survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for ~100,000 galaxies. Preprint at (2015)

  13. van de Sande, J. et al. Stellar kinematics of z ~ 2 galaxies and the inside-out growth of quiescent galaxies. Astrophys. J. 771, 85 (2013)

    Article  ADS  Google Scholar 

  14. Conroy, C. & van Dokkum, P. Counting low-mass stars in integrated light. Astrophys. J. 747, 69 (2012)

    Article  ADS  Google Scholar 

  15. Choi, J. et al. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy. Astrophys. J. 792, 95 (2014)

    Article  ADS  Google Scholar 

  16. Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 322, 231–246 (2001)

    Article  ADS  Google Scholar 

  17. Conroy, C. & van Dokkum, P. G. The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophys. J. 760, 71 (2012)

    Article  ADS  Google Scholar 

  18. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  19. Kobayashi, C., Umeda, H., Nomoto, K., Tominaga, N. & Ohkubo, T. Galactic chemical evolution: carbon through zinc. Astrophys. J. 653, 1145–1171 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Nomoto, K., Thielemann, F.-K. & Yokoi, K. Accreting white dwarf models of type I supernovae. III. Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Maoz, D., Mannucci, F. & Brandt, T. D. The delay-time distribution of type Ia supernovae from Sloan II. Mon. Not. R. Astron. Soc. 426, 3282–3294 (2012)

    Article  ADS  Google Scholar 

  22. Kobayashi, C. & Nomoto, K. The role of type Ia supernovae in chemical evolution. I. Lifetime of type Ia supernovae and metallicity effect. Astrophys. J. 707, 1466–1484 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Thielemann, F.-K., Nomoto, K. & Hashimoto, M.-A. Core-collapse supernovae and their ejecta. Astrophys. J. 460, 408–436 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181–235 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Fulbright, J. P., McWilliam, A. & Rich, R. M. Abundances of Baade’s window giants from Keck HIRES spectra. II. The alpha and light odd elements. Astrophys. J. 661, 1152–1179 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Riechers, D. A. et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 496, 329–333 (2013)

    Article  ADS  CAS  Google Scholar 

  27. Worthey, G., Faber, S. M., Gonzalez, J. J. & Burstein, D. Old stellar populations. V. Absorption feature indices for the complete LICK/IDS sample of stars. Astrophys. J. Suppl. Ser. 94, 687–722 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Thomas, D., Maraston, C. & Bender, R. Stellar population models of Lick indices with variable element abundance ratios. Mon. Not. R. Astron. Soc. 339, 897–911 (2003)

    Article  ADS  CAS  Google Scholar 

  29. van Dokkum, P. G. et al. Confirmation of the remarkable compactness of massive quiescent galaxies at z ~ 2.3: early-type galaxies did not form in a simple monolithic collapse. Astrophys. J. 677, L5–L8 (2008)

    Article  ADS  Google Scholar 

  30. Naab, T., Johansson, P. H. & Ostriker, J. P. Minor mergers and the size evolution of elliptical galaxies. Astrophys. J. 699, L178–L182 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009)

    Article  ADS  Google Scholar 

  32. Conroy, C. & Gunn, J. E. The propagation of uncertainties in stellar population synthesis modeling. III. Model calibration, comparison, and evaluation. Astrophys. J. 712, 833–857 (2010)

    Article  ADS  CAS  Google Scholar 

  33. Kriek, M. & Conroy, C. The dust attenuation law in distant galaxies: evidence for variation with spectral type. Astrophys. J. 775, L16 (2013)

    Article  ADS  Google Scholar 

  34. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    Article  ADS  Google Scholar 

  35. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    Article  ADS  Google Scholar 

  36. Maraston, C. Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. Mon. Not. R. Astron. Soc. 362, 799–825 (2005)

    Article  ADS  CAS  Google Scholar 

  37. Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    Article  ADS  CAS  Google Scholar 

  38. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000)

    Article  ADS  Google Scholar 

  39. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013)

    Article  ADS  Google Scholar 

  40. Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009)

    Article  ADS  CAS  Google Scholar 

Download references


M.K. acknowledges discussions with J. Greene and E. Quataert. The data presented in this paper were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership between the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the financial support of the W. M. Keck Foundation. We acknowledge the cultural role that the summit of Mauna Kea has within the indigenous Hawaiian community. We acknowledge support from NSF AAG collaborative grants AST-1312780, 1312547, 1312764 and 1313171 and archival grant AR-13907, provided by NASA through a grant from the Space Telescope Science Institute. C.C. acknowledges support from NASA grant NNX13AI46G, NSF grant AST-1313280 and the Packard Foundation.

Author information

Authors and Affiliations



M.K., P.G.v.D. and C.C. wrote the primary Keck proposal. M.K. and C.C. led the interpretation. M.K. wrote the reduction pipeline, reduced the data, determined the stellar mass, measured the Lick indices and wrote the text. C.C. developed the SPS model, fitted the spectrum and derived the chemical evolution model. M.K., P.G.v.D., J.C., F.v.d.V. and N.A.R. did the observations. All authors contributed to the analysis and interpretation.

Corresponding author

Correspondence to Mariska Kriek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks T. C. Beers, C. Kobayashi and C. Maraston for their contribution to the peer review of this work.

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriek, M., Conroy, C., van Dokkum, P. et al. A massive, quiescent, population II galaxy at a redshift of 2.1. Nature 540, 248–251 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing