Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Defects in trafficking bridge Parkinson's disease pathology and genetics

Abstract

Parkinson's disease is a debilitating, age-associated movement disorder. A central aspect of the pathophysiology of Parkinson's disease is the progressive demise of midbrain dopamine neurons and their axonal projections, but the underlying causes of this loss are unclear. Advances in genetics and experimental model systems have illuminated an important role for defects in intracellular transport pathways to lysosomes. The accumulation of altered proteins and damaged mitochondria, particularly at axon terminals, ultimately might overwhelm the capacity of intracellular disposal mechanisms. Cell-extrinsic mechanisms, including inflammation and prion-like spreading, are proposed to have both protective and deleterious functions in Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The proposed physiological and PD-associated pathological functions of α-synuclein in neurons.
Figure 2: PD-related genes associated with trafficking to the lysosome.
Figure 3: The synaptic vesicle cycle is implicated in PD.
Figure 4: Extracellular α-synuclein and the prion hypothesis.

Similar content being viewed by others

References

  1. Kalia, L. V. & Lang, A. E. Parkinson's disease. Lancet 386, 896–912 (2015).

    CAS  PubMed  Google Scholar 

  2. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nature Rev. Neurol. 9, 13–24 (2013).

    CAS  Google Scholar 

  3. Hornykiewicz, O. Dopamine (3-hydroxytyramine) in the central nervous system and its relation to the Parkinson syndrome in man [in German]. Dtsch. Med. Wochenschr. 87, 1807–1810 (1962).

    CAS  PubMed  Google Scholar 

  4. Dickson, D. W. Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med 2, a009258 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    ADS  CAS  PubMed  Google Scholar 

  6. Ciechanover, A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev. Mol. Cell Biol. 6, 79–87 (2005).

    CAS  Google Scholar 

  7. Braak, H. & Braak, E. Pathoanatomy of Parkinson's disease. J. Neurol. 247 (suppl. 2), II3–II10 (2000).

    PubMed  Google Scholar 

  8. Lin, M. K. & Farrer, M. J. Genetics and genomics of Parkinson's disease. Genome Med. 6, 48 (2014).

    PubMed  PubMed Central  Google Scholar 

  9. Polymeropoulos, M. H. et al. Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 274, 1197–1199 (1996).

    ADS  CAS  PubMed  Google Scholar 

  10. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    ADS  CAS  PubMed  Google Scholar 

  11. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259 (2003).

    ADS  CAS  PubMed  Google Scholar 

  12. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    ADS  CAS  PubMed  Google Scholar 

  13. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    CAS  PubMed  Google Scholar 

  14. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    PubMed  Google Scholar 

  15. Nalls, M. A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genet. 46, 989–993 (2014).

    CAS  PubMed  Google Scholar 

  16. International Parkinson Disease Genomics Consortium. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 (2011).

  17. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003).

    CAS  PubMed  Google Scholar 

  18. Chartier-Harlin, M. C. et al. α-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364, 1167–1169 (2004).

    CAS  PubMed  Google Scholar 

  19. Lee, V. M. & Trojanowski, J. Q. Mechanisms of Parkinson's disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).

    CAS  PubMed  Google Scholar 

  20. Farrer, M. et al. α-Synuclein gene haplotypes are associated with Parkinson's disease. Hum. Mol. Genet. 10, 1847–1851 (2001).

    CAS  PubMed  Google Scholar 

  21. Rhinn, H. et al. Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson's disease pathology. Nature Commun. 3, 1084 (2012).

    ADS  Google Scholar 

  22. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533, 95–99 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper, A. A. et al. α-Synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Outeiro, T. F. & Lindquist, S. Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302, 1772–1775 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013). Cortical neurons generated from people with a mutation in α-synuclein exhibit cellular features that could be predicted from the results of an unbiased screen of a yeast α-synuclein toxicity model and that could be reversed using a small-molecule 'hit' from the screen.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011). A cellular pathway links Gaucher's disease and PD through impaired lysosomal-enzyme targeting and protein degradation, which suggests that therapeutic targets and strategies might be effective for both disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazzulli, J. R., Zunke, F., Isacson, O., Studer, L. & Krainc, D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc. Natl Acad. Sci. USA 113, 1931–1936 (2016). Long-term cultures of human midbrain dopamine neurons from people with PD or Gaucher's disease exhibit defects in the trafficking of important lysosomal enzymes, which could be rescued by boosting the transport of vesicles.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Volpicelli-Daley, L. A. et al. Formation of α-synuclein Lewy neurite-like aggregates in axons impedes the transport of distinct endosomes. Mol. Biol. Cell 25, 4010–4023 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Theillet, F. X. et al. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).

    ADS  CAS  PubMed  Google Scholar 

  30. Burré, J., Sharma, M. & Sudhof, T. C. α-Synuclein assembles into higher-order multimers upon membrane binding to promote SNARE complex formation. Proc. Natl Acad. Sci. USA 111, E4274–E4283 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  31. Bartels, T., Choi, J. G. & Selkoe, D. J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dettmer, U. et al. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nature Commun. 6, 7314 (2015).

    ADS  Google Scholar 

  33. Luk, K. C. et al. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012). A single, intrastriatal injection of α-synuclein fibrils in wild-type mice initiates the templating and propagation of pathological aggregates, the loss of dopaminergic neurons and motor deficits, providing a direct mechanistic link between the spread of α-synuclein and the pathogenesis of PD.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryan, S. D. et al. Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2–PGC1α transcription. Cell 155, 1351–1364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pickrell, A. M. et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron 87, 371–381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nature Rev. Mol. Cell Biol. 12, 9–14 (2011).

    CAS  Google Scholar 

  38. Chen, L., Xie, Z., Turkson, S. & Zhuang, X. A53T human α-synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J. Neurosci. 35, 890–905 (2015).

    PubMed  Google Scholar 

  39. Pickrell, A. M. & Youle, R. J. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257–273 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, B. et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267 (2010).

    CAS  PubMed  Google Scholar 

  41. Lee, H. J. et al. Autophagic failure promotes the exocytosis and intercellular transfer of α-synuclein. Exp. Mol. Med. 45, e22 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. Kong, S. M. et al. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-synuclein externalization via exosomes. Hum. Mol. Genet. 23, 2816–2833 (2014).

    CAS  PubMed  Google Scholar 

  43. Tsunemi, T., Hamada, K. & Krainc, D. ATP13A2/PARK9 regulates secretion of exosomes and α-synuclein. J. Neurosci. 34, 15281–15287 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Fellner, L. et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61, 349–360 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Rannikko, E. H., Weber, S. S. & Kahle, P. J. Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci. 16, 57 (2015).

    PubMed  PubMed Central  Google Scholar 

  46. Kim, C. et al. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nature Commun. 4, 1562 (2013).

    ADS  Google Scholar 

  47. Wang, S. et al. α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation. Proc. Natl Acad. Sci. USA 112, E1926–E1935 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252 (2000).

    CAS  PubMed  Google Scholar 

  49. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. & Sudhof, T. C. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005).

    CAS  PubMed  Google Scholar 

  50. Burré, J. et al. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010). α-Synuclein is shown to function as a chaperone that facilitates the maintenance of SNARE complexes at the synapse, and Snca Sncb Sncg triple-knockout mice exhibited neurological impairments and deficits in SNARE-complex assembly, revealing an important physiological function for α-synuclein of relevance to neurodegeneration.

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Kubo, S. et al. A combinatorial code for the interaction of α-synuclein with membranes. J. Biol. Chem. 280, 31664–31672 (2005).

    CAS  PubMed  Google Scholar 

  52. Nakamura, K. et al. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286, 20710–20726 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gitler, A. D. & Shorter, J. Prime time for α-synuclein. J. Neurosci. 27, 2433–2434 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. West, A. B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl Acad. Sci. USA 102, 16842–16847 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. MacLeod, D. et al. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52, 587–593 (2006).

    CAS  PubMed  Google Scholar 

  56. MacLeod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425–439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dodson, M. W., Leung, L. K., Lone, M., Lizzio, M. A. & Guo, M. Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dis. Model. Mech. 7, 1351–1363 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Martin, I. et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson's disease. Cell 157, 472–485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Waschbüsch, D. et al. LRRK2 transport is regulated by its novel interacting partner Rab32. PLoS ONE 9, e111632 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. Steger, M. et al. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5, e12813 (2016). A proteomics approach identifies specific Rab GTPases as physiological targets of the kinase LRRK2; pathogenic variants of LRRK2 increase the phosphorylation of such targets, providing a mechanism that connects mutations in LRRK2 to defects in vesicle-trafficking steps that are orchestrated by Rab GTPases and their effectors.

    PubMed  PubMed Central  Google Scholar 

  61. Beilina, A. et al. Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc. Natl Acad. Sci. USA 111, 2626–2631 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl Acad. Sci. USA 107, 9879–9884 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fuji, R. N. et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl. Med. 7, 273ra15, (2015).

    PubMed  Google Scholar 

  64. Herzig, M. C. et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum. Mol. Genet. 20, 4209–4223 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sidransky, E. Gaucher disease and parkinsonism. Mol. Genet. Metab. 84, 302–304 (2005).

    CAS  PubMed  Google Scholar 

  66. Zuckerman, S. et al. Carrier screening for Gaucher disease: lessons for low-penetrance, treatable diseases. J. Am. Med. Assoc. 298, 1281–1290 (2007).

    CAS  Google Scholar 

  67. Goker-Alpan, O. et al. Parkinsonism among Gaucher disease carriers. J. Med. Genet. 41, 937–940 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schöndorf, D. C. et al. iPSC-derived neurons from GBA1-associated Parkinson's disease patients show autophagic defects and impaired calcium homeostasis. Nature Commun. 5, 4028 (2014).

    ADS  Google Scholar 

  69. Do, C. B. et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLoS Genet. 7, e1002141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rothaug, M. et al. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proc. Natl Acad. Sci. USA 111, 15573–15578 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).

    CAS  PubMed  Google Scholar 

  72. Gitler, A. D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genet. 41, 308–315 (2009).

    CAS  PubMed  Google Scholar 

  73. Kett, L. R. et al. α-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2. J. Neurosci. 35, 5724–5742 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P. & Krainc, D. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J. Neurosci. 32, 4240–4246 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Bento, C. F., Ashkenazi, A., Jimenez-Sanchez, M. & Rubinsztein, D. C. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nature Commun. 7, 11803 (2016).

    ADS  CAS  Google Scholar 

  76. Korvatska, O. et al. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum. Mol. Genet. 22, 3259–3268 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dubos, A. et al. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum. Mol. Genet. 24, 6736–6755 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lesage, S. et al. Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am. J. Hum. Genet. 98, 500–513 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol. 12, 517–533 (2011).

    CAS  Google Scholar 

  80. Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89, 168–175 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011).

    PubMed  PubMed Central  Google Scholar 

  82. Parks, W. T. et al. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-β family of receptor serine-threonine kinases. J. Biol. Chem. 276, 19332–19339 (2001).

    CAS  PubMed  Google Scholar 

  83. Seaman, M. N. & Freeman, C. L. Analysis of the retromer complex–WASH complex interaction illuminates new avenues to explore in Parkinson disease. Commun. Integr. Biol. 7, e29483 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Zavodszky, E. et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nature Commun. 5, 3828 (2014).

    ADS  CAS  Google Scholar 

  85. Dhungel, N. et al. Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 85, 76–87 (2015).

    CAS  PubMed  Google Scholar 

  86. Tsika, E. et al. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum. Mol. Genet. 23, 4621–4638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. McGough, I. J. et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr. Biol. 24, 1670–1676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Miura, E. et al. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiol. Dis. 71, 1–13 (2014).

    CAS  PubMed  Google Scholar 

  91. Tang, F. L. et al. VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson's disease. J. Neurosci. 35, 10613–10628 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vilariño-Güell, C. et al. DNAJC13 mutations in Parkinson disease. Hum. Mol. Genet. 23, 1794–1801 (2014).

    PubMed  Google Scholar 

  93. Edvardson, S. et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS ONE 7, e36458 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Quadri, M. et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum. Mutat. 34, 1208–1215 (2013).

    CAS  PubMed  Google Scholar 

  95. Krebs, C. E. et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34, 1200–1207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wilson, G. R. et al. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology. Am. J. Hum. Genet. 95, 729–735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Nemani, V. M. et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Arranz, A. M. et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J. Cell Sci. 128, 541–552 (2015).

    CAS  PubMed  Google Scholar 

  99. Munsie, L. N. et al. Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson's disease VPS35 mutation p.D620N. Hum. Mol. Genet. 24, 1691–1703 (2015).

    CAS  PubMed  Google Scholar 

  100. Deng, H. X. et al. Identification of TMEM230 mutations in familial Parkinson's disease. Nature Genet. 48, 733–739 (2016).

    CAS  PubMed  Google Scholar 

  101. Satake, W. et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nature Genet. 41, 1303–1307 (2009).

    CAS  PubMed  Google Scholar 

  102. Simón-Sánchez, J. et al. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nature Genet. 41, 1308–1312 (2009).

    PubMed  Google Scholar 

  103. Ishizawa, T., Mattila, P., Davies, P., Wang, D. & Dickson, D. W. Colocalization of tau and α-synuclein epitopes in Lewy bodies. J. Neuropathol. Exp. Neurol. 62, 389–397 (2003).

    CAS  PubMed  Google Scholar 

  104. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bae, E. J. et al. Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nature Commun. 5, 4755 (2014).

    ADS  CAS  Google Scholar 

  108. Walsh, D. M. & Selkoe, D. J. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nature Rev. Neurosci. 17, 251–260 (2016).

    CAS  Google Scholar 

  109. Kannarkat, G. T., Boss, J. M. & Tansey, M. G. The role of innate and adaptive immunity in Parkinson's disease. J. Parkinsons Dis. 3, 493–514 (2013).

    PubMed  PubMed Central  Google Scholar 

  110. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  111. Czirr, E. & Wyss-Coray, T. The immunology of neurodegeneration. J. Clin. Invest. 122, 1156–1163 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Harms, A. S. et al. MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J. Neurosci. 33, 9592–9600 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Su, X. et al. Synuclein activates microglia in a model of Parkinson's disease. Neurobiol. Aging 29, 1690–1701 (2008).

    CAS  PubMed  Google Scholar 

  114. Kim, C. et al. Antagonizing neuronal Toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep. 13, 771–782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, H. J., Suk, J. E., Bae, E. J. & Lee, S. J. Clearance and deposition of extracellular α-synuclein aggregates in microglia. Biochem. Biophys. Res. Commun. 372, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  116. Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J. 19, 533–542 (2005).

    CAS  PubMed  Google Scholar 

  117. Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, P. T. Jr. Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct. Science 294, 1346–1349 (2001).

    ADS  CAS  PubMed  Google Scholar 

  118. Martinez-Vicente, M. et al. Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118, 777–788 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mosharov, E. V. et al. Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218–229 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ashrafi, G., Schlehe, J. S., LaVoie, M. J. & Schwarz, T. L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 655–670 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chan, C. S. et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447, 1081–1086 (2007).

    ADS  CAS  PubMed  Google Scholar 

  123. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nature Med. 19, 983–997 (2013).

    CAS  PubMed  Google Scholar 

  124. Small, S. A. & Petsko, G. A. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nature Rev. Neurosci. 16, 126–132 (2015).

    CAS  Google Scholar 

  125. Schneider, J. L. & Cuervo, A. M. Autophagy and human disease: emerging themes. Curr. Opin. Genet. Dev. 26, 16–23 (2014).

    CAS  PubMed  Google Scholar 

  126. Wong, Y. C. & Holzbaur, E. L. Autophagosome dynamics in neurodegeneration at a glance. J. Cell Sci. 128, 1259–1267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Decressac, M. et al. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl Acad. Sci. USA 110, E1817–E1826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Richter, F. et al. A GCase chaperone improves motor function in a mouse model of synucleinopathy. Neurotherapeutics 11, 840–856 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Daher, J. P. et al. Leucine-rich repeat kinase 2 (LRRK2) pharmacological inhibition abates α-synuclein gene-induced neurodegeneration. J. Biol. Chem. 290, 19433–19444 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mecozzi, V. J. et al. Pharmacological chaperones stabilize retromer to limit APP processing. Nature Chem. Biol. 10, 443–449 (2014). The identification of a small molecule that increases the stability of the retromer complex and enhances its function, suggesting that such small molecules might also be effective at boosting retromer function in models of PD.

    CAS  Google Scholar 

  131. Tran, H. T. et al. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309–314 (2015). Two receptors, optineurin and CALCOCO2 (also known as NDP52), were identified as important targets of PINK1 for recruitment to damaged mitochondria and for the initiation of selective autophagy (mitophagy).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Südhof, T. C. The molecular machinery of neurotransmitter release (Nobel lecture). Angew. Chem. Int. Edn Engl. 53, 12696–12717 (2014).

    Google Scholar 

  134. Sanders, D. W., Kaufman, S. K., Holmes, B. B. & Diamond, M. I. Prions and protein assemblies that convey biological information in health and disease. Neuron 89, 433–448 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nature Rev. Mol. Cell Biol. 10, 513–525 (2009).

    CAS  Google Scholar 

  136. Luzio, J. P., Hackmann, Y., Dieckmann, N. M. & Griffiths, G. M. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb. Perspect. Biol. 6, a016840 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Lynch-Day, M. A., Mao, K., Wang, K., Zhao, M. & Klionsky, D. J. The role of autophagy in Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a009357 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439–E4448 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Pfeffer for reading the manuscript. This work was funded by grants from the Michael J. Fox Foundation and the US National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asa Abeliovich or Aaron D. Gitler.

Ethics declarations

Competing interests

A.A. is a co-founder of and a consultant to Alector Inc., a biotechnology company.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks R. Nixon and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeliovich, A., Gitler, A. Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 539, 207–216 (2016). https://doi.org/10.1038/nature20414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20414

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing