Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decoding ALS: from genes to mechanism

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid–liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of the nervous system that are affected by ALS.
Figure 2: Mechanisms of disease implicated in ALS.
Figure 3: ALS mutations impair the assembly, dynamics and function of membraneless organelles.
Figure 4: Proposed mechanisms for the development of C9 ALS–FTD.

Similar content being viewed by others

References

  1. Al-Chalabi, A. & Hardiman, O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nature Rev. Neurol. 9, 617–628 (2013).

    Article  CAS  Google Scholar 

  2. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). The first report of a gene defect that causes ALS.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gamez, J. et al. Mutational analysis of the Cu/Zn superoxide dismutase gene in a Catalan ALS population: should all sporadic ALS cases also be screened for SOD1? J. Neurol. Sci. 247, 21–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Cooper-Knock, J. et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain 135, 751–764 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010). The first report of a relationship between microsatellite expansion in ATXN2 and susceptibility to ALS.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Hoecke, A. et al. EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Med. 18, 1418–1422 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011). This paper and ref. 79 were the first reports to describe pathogenic microsatellite expansion in C9orf72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Sarraj, S. et al. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 122, 691–702 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998). This study demonstrated that ALS-causing mutant SOD1 generates a toxicity that is independent of its dismutase activity.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Cleveland, D. W., Laing, N., Hurse, P. V. & Brown, R. H. Jr. Toxic mutants in Charcot's sclerosis. Nature 378, 342–343 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Bruijn, L. I. et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18, 327–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Parone, P. A. et al. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis. J. Neurosci. 33, 4657–4671 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamanaka, K. et al. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl Acad. Sci. USA 105, 7594–7599 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ralph, G. S. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Med. 11, 429–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nature Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006). This report showed that the expression of mutant SOD1 in microglia accelerates the progression of ALS, establishing a role for non-cell autonomous events in motor neuron degeneration in the disease.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Beers, D. R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 103, 16021–16026 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frakes, A. E. et al. Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harraz, M. M. et al. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J. Clin. Invest. 118, 659–670 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016). This report documented the amelioration of cognitive deficits in mice that express expanded hexanucleotide repeats following the intraventricular infusion of antisense oligonucleotides that reduce the levels of GGGGCC RNA transcripts and DPR proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burberry, A. et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl. Med. 8, 347ra93 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kang, S. H. et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neurosci. 16, 571–579 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., Gutmann, D. H. & Roos, R. P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet. 20, 286–293 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Howland, D. S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J. & Kuncl, R. W. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38, 73–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Van Damme, P. et al. Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl Acad. Sci. USA 104, 14825–14830 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nature Neurosci. 10, 608–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Marchetto, M. C. et al. Non-cell-autonomous effect of human SOD1G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Haidet-Phillips, A. M. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature Biotechnol. 29, 824–828 (2011). This report demonstrated that motor neuron viability is compromised by astro-cytes derived from post-mortem tissue in both familial ALS and sporadic ALS.

    Article  CAS  Google Scholar 

  36. Re, D. B. et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81, 1001–1008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lepore, A. C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nature Neurosci. 11, 1294–1301 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Nishitoh, H. et al. ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev. 22, 1451–1464 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nature Neurosci. 12, 627–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Deng, H. X. et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477, 211–215 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

    Article  PubMed  Google Scholar 

  42. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson, J. O. et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parkinson, N. et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, H. J. et al. Characterization of the properties of a novel mutation in VAPB in familial amyotrophic lateral sclerosis. J. Biol. Chem. 285, 40266–40281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kabashi, E., Agar, J. N., Taylor, D. M., Minotti, S. & Durham, H. D. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 89, 1325–1335 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Urushitani, M., Kurisu, J., Tsukita, K. & Takahashi, R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 83, 1030–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neurosci. 2, 50–56 (199 9).

  50. Chen, X. J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524, (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perlson, E. et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J. Neurosci. 29, 9903–9917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Puls, I. et al. Mutant dynactin in motor neuron disease. Nature Genet. 33, 455–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Gill, S. R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115, 1639–1650 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Sutton, M. A. & Schuman, E. M. Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49–58 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grad, L. I. et al. Intermolecular transmission of superoxide dismutase 1 misfolding in living cells. Proc. Natl Acad. Sci. USA 108, 16398–16403 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl Acad. Sci. USA 108, 3548–3553 (2011).

    Article  ADS  Google Scholar 

  59. Deng, H. X. et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc. Natl Acad. Sci. USA 103, 7142–7147 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ayers, J. I., Fromholt, S. E., O'Neal, V. M., Diamond, J. H. & Borchelt, D. R. Prion-like propagation of mutant SOD1 misfolding and motor neuron disease spread along neuroanatomical pathways. Acta Neuropathol. 131, 103–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Ravits, J. M. & La Spada, A. R. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73, 805–811 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Urushitani, M. et al. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nature Neurosci. 9, 108–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, J. G., Takahama, S., Zhang, G., Tomarev, S. I. & Ye, Y. Unconventional secretion of misfolded proteins promotes adaptation to proteasome dysfunction in mammalian cells. Nature Cell Biol. 18, 765–776 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Salajegheh, M. et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 40, 19–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lippa, C. F. et al. Transactive response DNA-binding protein 43 burden in familial Alzheimer disease and Down syndrome. Arch. Neurol. 66, 1483–1488 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chanson, J. B. et al. TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson's disease. Neurodegener. Dis. 7, 260–264 (2010).

    Article  PubMed  Google Scholar 

  67. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008). The first report of a germline TDP-43 mutation as a cause of familial ALS.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009). This paper and ref. 71 were the first to identify mutations in the gene FUS that cause familial ALS.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Kim, H. J. et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467–473 (2013). The first report of a germline mutation in HNRNPA1 as a cause of familial ALS, and also the first demonstration that disease-causing mutations in low-complexity sequences can drive the hyperassembly of a membraneless organelle.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Q. et al. Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology http://dx.doi.org/10.1212/WNL.0000000000003256 (2016).

  72. Tollervey, J. R. et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nature Neurosci. 14, 452–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Polymenidou, M. et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nature Neurosci. 14, 459–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nature Neurosci. 15, 1488–1497 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Huelga, S. C. et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 1, 167–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnson, J. O. et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neurosci. 17, 664–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hyman, A. A., Weber, C. A. & Julicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015). This study demonstrated that low-complexity domains undergo phase separation that promotes the assembly of membraneless organelles such as stress granules and drives pathological fibrillization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015). Ref. 81 and this paper were the first to show that pathological fibrils arise from liquid-like assemblies of proteins.

    Article  CAS  PubMed  Google Scholar 

  81. Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shang, Y. & Huang, E. J. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 1647, 65–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murakami, T. et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim, S. M. et al. Directly converted patient-specific induced neurons mirror the neuropathology of FUS with disrupted nuclear localization in amyotrophic lateral sclerosis. Mol. Neurodegener. 11, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Buratti, E. & Baralle, F. E. The molecular links between TDP-43 dysfunction and neurodegeneration. Adv. Genet. 66, 1–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ling, J. P., Pletnikova, O., Troncoso, J. C. & Wong, P. C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349, 650–655 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Z. et al. Downregulation of microRNA-9 in iPSC-derived neurons of FTD/ALS patients with TDP-43 mutations. PLoS ONE 8, e76055 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Valdez, G., Heyer, M. P., Feng, G. & Sanes, J. R. The role of muscle microRNAs in repairing the neuromuscular junction. PLoS ONE 9, e93140 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  91. Williams, A. H. et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Emde, A. et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS-causing mutations: a new mechanism for ALS. EMBO J. 34, 2633–2651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cloutier, F., Marrero, A., O'Connell, C. & Morin, P. Jr., MicroRNAs as potential circulating biomarkers for amyotrophic lateral sclerosis. J. Mol. Neurosci. 56, 102–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Morita, M. et al. A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66, 839–844 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Vance, C. et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129, 868–876 (2006).

    Article  PubMed  Google Scholar 

  96. Shatunov, A. et al. Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study. Lancet Neurol. 9, 986–994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Laaksovirta, H. et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol. 9, 978–985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Van Deerlin, V. M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genet. 42, 234–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. van Es, M. A. et al. Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genet. 41, 1083–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Waite, A. J. et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging 35, 1779.e5–1779.e13 (2014).

    Article  CAS  Google Scholar 

  101. Webster, C. P. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 35, 1656–1676 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sellier, C. et al. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J. 35, 1276–1297 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Koppers, M. et al. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann. Neurol. 78, 426–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Atanasio, A. et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci. Rep. 6, 23204 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chew, J. et al. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gendron, T. F. et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol. 126, 829–844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mori, K. et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 126, 881–893 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Zu, T. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nature Rev. Genet. 11, 247–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, Y. B. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 1178–1186 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mackenzie, I. R. et al. Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol. 126, 859–879 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Xu, Z. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc. Natl Acad. Sci. USA 110, 7778–7783 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cooper-Knock, J. et al. Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol. 130, 63–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang, K. et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Taylor, J. P. Neurodegenerative diseases: G-quadruplex poses quadruple threat. Nature 507, 175–177 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Burguete, A. S. et al. GGGGCC microsatellite RNA is neuritically localized, induces branching defects, and perturbs transport granule function. eLife 4, e08881 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ishiguro, A., Kimura, N., Watanabe, Y., Watanabe, S. & Ishihama, A. TDP-43 binds and transports G-quadruplex-containing mRNAs into neurites for local translation. Genes Cells 21, 466–481 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  121. Ash, P. E. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646 (2013). This paper and ref. 121 identified the DPR-protein pathology in C9 ALS–FTD tissue.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Mackenzie, I. R. et al. Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol. 130, 845–861 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Schludi, M. H. et al. Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol. 130, 537–555 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kwon, I. et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345, 1139–1145 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mizielinska, S. et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192–1194 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wen, X. et al. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84, 1213–1225 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Freibaum, B. D. et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lee, K.-H. et al. C9orf72 dipeptide repeats impair the assembly, dynamics and function of membrane-less organelles. Cell 167, 774–788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin, Y. et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers. Cell 167, 789–802 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yamakawa, M. et al. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum. Mol. Genet. 24, 1630–1645 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, Y. J. et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 128, 505–524 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nature Neurosci. 19, 668–677 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Jovičić, A. et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nature Neurosci. 18, 1226–1229 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Donnelly, C. J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. O'Rourke, J. G. et al. C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88, 892–901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Peters, O. M. et al. Human C9ORF72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88, 902–909 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90, 521–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Brown, R. H. Jr., & Al-Chalabi, A. Endogenous retroviruses in ALS: a reawakening? Sci. Transl. Med. 7, 307fs40 (2015).

    PubMed  Google Scholar 

  141. Greenway, M. J. et al. ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis. Nature Genet. 38, 411–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genet. 40, 572–574 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Teyssou, E. et al. Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol. 125, 511–522 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Wu, C. H. et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Smith, B. N. et al. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84, 324–331 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bannwarth, S. et al. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137, 2329–2345 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neurosci. 18, 631–636 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for the many studies we were unable to cite because of space limitations. The authors gratefully acknowledge the artwork and editorial assistance provided by N. Nedelsky and H.-J. Kim and the provision of histopathology images by J. Ravits and S. Saberi. J.P.T. receives support from the Howard Hughes Medical Institute, the US National Institute of Neurological Disorders and Stroke (NINDS), the American Lebanese Syrian Associated Charities, Target ALS and the US ALS Association. R.H.B. receives support from NINDS, the ALS Association, ALS Finding a Cure, ALS ONE, the Angel Fund for ALS Research and Project ALS. D.W.C. receives salary support from the Ludwig Institute for Cancer Research and is supported by funding from NINDS (R01 NS27036), the ALS Association and Target ALS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Paul Taylor, Robert H. Brown Jr or Don W. Cleveland.

Ethics declarations

Competing interests

J.P.T. is a consultant for Inception Biosciences. D.W.C. is a consultant for Ionis Pharmaceuticals.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Reviewer Information Nature thanks I. Dikic, J. Rothstein and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J., Brown, R. & Cleveland, D. Decoding ALS: from genes to mechanism. Nature 539, 197–206 (2016). https://doi.org/10.1038/nature20413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20413

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing