Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ghost imaging with atoms

Abstract

Ghost imaging is a counter-intuitive phenomenon—first realized in quantum optics1,2—that enables the image of a two-dimensional object (mask) to be reconstructed using the spatio-temporal properties of a beam of particles with which it never interacts. Typically, two beams of correlated photons are used: one passes through the mask to a single-pixel (bucket) detector while the spatial profile of the other is measured by a high-resolution (multi-pixel) detector. The second beam never interacts with the mask. Neither detector can reconstruct the mask independently, but temporal cross-correlation between the two beams can be used to recover a ‘ghost’ image. Here we report the realization of ghost imaging using massive particles instead of photons. In our experiment, the two beams are formed by correlated pairs of ultracold, metastable helium atoms3, which originate from s-wave scattering of two colliding Bose–Einstein condensates4,5. We use higher-order Kapitza–Dirac scattering6,7,8 to generate a large number of correlated atom pairs, enabling the creation of a clear ghost image with submillimetre resolution. Future extensions of our technique could lead to the realization of ghost interference9, and enable tests of Einstein–Podolsky–Rosen entanglement9 and Bell’s inequalities10 with atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of atomic ghost imaging.
Figure 2: Schematic of the experiment and resulting ghost image.
Figure 3: Cross-correlation function.
Figure 4: Resolution and visibility of the ghost image.

Similar content being viewed by others

References

  1. Erkmen, B. I. & Shapiro, J. H. Ghost imaging: from quantum to classical to computational. Adv. Opt. Photonics 2, 405–450 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Shapiro, J. H. & Boyd, R. W. The physics of ghost imaging. Quantum Inf. Process. 11, 949–993 (2012)

    Article  Google Scholar 

  3. Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012)

    Article  ADS  CAS  Google Scholar 

  4. Perrin, A. et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose–Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Jaskula, J.-C. et al. Sub-Poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010)

    Article  ADS  Google Scholar 

  6. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Math. Proc. Camb. Philos. Soc. 29, 297–300 (1933)

    Article  ADS  Google Scholar 

  7. Gould, P. L., Ruff, G. A. & Pritchard, D. E. Diffraction of atoms by light: the near-resonant Kapitza–Dirac effect. Phys. Rev. Lett. 56, 827–830 (1986)

    Article  ADS  CAS  Google Scholar 

  8. Ovchinnikov, Yu. B. et al. Diffraction of a released Bose–Einstein condensate by a pulsed standing light wave. Phys. Rev. Lett. 83, 284–287 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Kofler, J. et al. Einstein–Podolsky–Rosen correlations from colliding Bose–Einstein condensates. Phys. Rev. A 86, 032115 (2012)

    Article  ADS  Google Scholar 

  10. Jack, B. et al. Holographic ghost imaging and the violation of a Bell inequality. Phys. Rev. Lett. 103, 083602 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Pittman, T. B., Shih, Y. H., Strekalov, D. V. & Sergienko, A. V. Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429–R3432 (1995)

    Article  ADS  CAS  Google Scholar 

  12. Strekalov, D. V., Sergienko, A. V., Klyshko, D. N. & Shih, Y. H. Observation of two-photon “ghost” interference and diffraction. Phys. Rev. Lett. 74, 3600–3603 (1995)

    Article  ADS  CAS  Google Scholar 

  13. Klyshko, D. N. Effect of focusing on photon correlation in parametric light scattering. Sov. Phys. JETP 67, 1131–1135 (1988)

    ADS  Google Scholar 

  14. Belinskii, A. V. & Klyshko, D. N. Two-photon optics: diffraction, holography, and transformation of two-dimensional signals. Sov. Phys. JETP 78, 259–262 (1994)

    ADS  Google Scholar 

  15. Hardy, N. D. & Shapiro, J. H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Phys. Rev. A 87, 023820 (2013)

    Article  ADS  Google Scholar 

  16. Yuan, S., Yao, J., Liu, X., Zhou, X. & Li, Z. Cryptanalysis and security enhancement of optical cryptography based on computational ghost imaging. Opt. Commun. 365, 180–185 (2016)

    Article  ADS  CAS  Google Scholar 

  17. Yu, H. et al. Fourier-transform ghost imaging with hard X rays. Phys. Rev. Lett. 117, 113901 (2016)

    Article  ADS  Google Scholar 

  18. Pelliccia, D., Rack, A., Scheel, M., Cantelli, V. & Paganin, D. M. Experimental X-ray ghost imaging. Phys. Rev. Lett. 117, 113902 (2016)

    Article  ADS  Google Scholar 

  19. Sun, B. et al. 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013)

    Article  ADS  CAS  Google Scholar 

  20. Ryczkowski, P., Barbier, M., Friberg, A. T., Dudley, J. M. & Genty, G. Ghost imaging in the time domain. Nat. Photon. 10, 167–170 (2016)

    Article  ADS  CAS  Google Scholar 

  21. Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Morris, P. A., Aspden, R., Bell, J. E. C., Boyd, R. W. & Padgett, M. J. Imaging with a small number of photons. Nat. Commun. 6, 5913 (2015)

    Article  ADS  CAS  Google Scholar 

  23. Bennink, R. S., Bentley, S. J. & Boyd, R. W. “Two-photon” coincidence imaging with a classical source. Phys. Rev. Lett. 89, 113601 (2002)

    Article  ADS  Google Scholar 

  24. Bennink, R. S., Bentley, S. J., Boyd, R. W. & Howell, J. C. Quantum and classical coincidence imaging. Phys. Rev. Lett. 92, 033601 (2004)

    Article  ADS  Google Scholar 

  25. Ferri, F. et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 94, 183602 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Yasuda, M. & Shimizu, F. Observation of two-atom correlation of an ultracold neon atomic beam. Phys. Rev. Lett. 77, 3090–3093 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Hodgman, S. S., Dall, R. G., Manning, A. G., Baldwin, K. G. H. & Truscott, A. G. Direct measurement of long-range third-order coherence in Bose–Einstein condensates. Science 331, 1046–1049 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Lewis-Swan, R. J. & Kheruntsyan, K. V. Proposal for demonstrating the Hong–Ou–Mandel effect with matter waves. Nat. Commun. 5, 3752 (2014)

    Article  ADS  CAS  Google Scholar 

  30. Lewis-Swan, R. J. & Kheruntsyan, K. V. Proposal for a motional-state Bell inequality test with ultracold atoms. Phys. Rev. A 91, 052114 (2015)

    Article  ADS  Google Scholar 

  31. Dall, R. G. & Truscott, A. G. Bose–Einstein condensation of metastable helium in a bi-planar quadrupole Ioffe configuration trap. Opt. Commun. 270, 255–261 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Manning, A. G., Khakimov, R. I., Dall, R. G. & Truscott, A. G. Wheeler’s delayed-choice gedanken experiment with a single atom. Nat. Phys. 11, 539–542 (2015)

    Article  CAS  Google Scholar 

  33. Dall, R. G. et al. Ideal n-body correlations with massive particles. Nat. Phys. 9, 341–344 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.G.T. acknowledges the support of the Australian Research Council (ARC) through the Future Fellowship grant FT100100468 and the Discovery grant DP120101390. S.S.H. acknowledges the support of the ARC through the DECRA Fellowship DE150100315. We thank A. T. Friberg for discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.I.K., R.G.D. and A.G.T. conceived the experiment. R.I.K. performed the experiment and collected the data. All authors contributed to the conceptual formulation of the physics, the interpretation of the data and the writing of the manuscript.

Corresponding author

Correspondence to A. G. Truscott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks M. A. Kasevich and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 The object.

Microscope image of the mask used to create the ghost image. The region indicated by the dashed line forms the vertical bars shown in Fig. 4a, which was used to determine the ghost imaging resolution.

Extended Data Figure 2 Ghost image visibility.

Visibilities (dots) for images (insets) reconstructed from each individual halo with different average numbers of atoms . Diffraction orders producing the halos are labelled as ( + 1, ). The dashed curve is a guide to the eye. Error bars represent the standard error of the mean associated with the variances of the pixel values contributing to I and B.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakimov, R., Henson, B., Shin, D. et al. Ghost imaging with atoms. Nature 540, 100–103 (2016). https://doi.org/10.1038/nature20154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20154

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing