Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermophilic archaea activate butane via alkyl-coenzyme M formation

Abstract

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C4 hydrocarbon butane. The archaea, proposed genus ‘Candidatus Syntrophoarchaeum’, show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding β-oxidation enzymes, carbon monoxide dehydrogenase and reversible C1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Butane50 culture.
Figure 2: Butyl-CoM as initial metabolic intermediate in butane oxidation
Figure 3: Phylogenetic affiliation of McrA amino acid sequences present in Ca. S. butanivorans and Ca. S. caldarius.
Figure 4: Metabolic scheme proposed for butane oxidation with sulfate based on molecular analyses.
Figure 5: Testing metabolic interaction of Ca. Syntrophoarchaeum and Ca. D. auxilii in Butane50 cultures.

Similar content being viewed by others

References

  1. Simoneit, B. R. T., Kawka, O. E. & Brault, M. Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182 (1988)

    ADS  CAS  Google Scholar 

  2. Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007)

    CAS  PubMed  Google Scholar 

  3. Boetius, A. & Wenzhofer, F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat. Geosci. 6, 725–734 (2013)

    ADS  CAS  Google Scholar 

  4. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000)

    ADS  CAS  PubMed  Google Scholar 

  6. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004)

    ADS  CAS  PubMed  Google Scholar 

  7. Meyerdierks, A. et al. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12, 422–439 (2010)

    CAS  PubMed  Google Scholar 

  8. McGlynn, S. E., Chadwick, G. L., Kempes, C. P. & Orphan, V. J. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535 (2015)

    ADS  CAS  PubMed  Google Scholar 

  9. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H. E. & Boetius, A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590 (2015)

    ADS  CAS  PubMed  Google Scholar 

  10. Claypool, G. E. & Kvenvolden, K. A. Methane and other hydrocarbon gases in marine sediment. Annu. Rev. Earth Planet. Sci. 11, 299–327 (1983)

    ADS  CAS  Google Scholar 

  11. Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence. (Springer-Verlag, 1984)

  12. Kniemeyer, O. et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449, 898–901 (2007)

    ADS  CAS  PubMed  Google Scholar 

  13. Savage, K. N. et al. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns. FEMS Microbiol. Ecol. 72, 485–495 (2010)

    CAS  PubMed  Google Scholar 

  14. Jaekel, U. et al. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 7, 885–895 (2013)

    CAS  PubMed  Google Scholar 

  15. Adams, M. M., Hoarfrost, A. L., Bose, A., Joye, S. B. & Girguis, P. R. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Front. Microbiol. 4, 110 (2013)

    PubMed  PubMed Central  Google Scholar 

  16. Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kropp, K. G., Davidova, I. A. & Suflita, J. M. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 66, 5393–5398 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rabus, R. et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J. Bacteriol. 183, 1707–1715 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Heider, J. et al. Structure and function of benzylsuccinate synthase and related fumarate-adding glycyl radical enzymes. J. Mol. Microbiol. Biotechnol. 26, 29–44 (2016)

    CAS  PubMed  Google Scholar 

  20. Gittel, A. et al. Ubiquitous presence and novel diversity of anaerobic alkane degraders in cold marine sediments. Front. Microbiol. 6, 1414 (2015)

    PubMed  PubMed Central  Google Scholar 

  21. Holler, T. et al. Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J. 5, 1946–1956 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Orcutt, B. N. et al. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2008–2021 (2010)

    ADS  CAS  Google Scholar 

  23. Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144, 2377–2406 (1998)

    CAS  PubMed  Google Scholar 

  24. Jaekel, U., Vogt, C., Fischer, A., Richnow, H.-H. & Musat, F. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria. Environ. Microbiol. 16, 130–140 (2014)

    CAS  PubMed  Google Scholar 

  25. Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98–106 (2005)

    CAS  PubMed  Google Scholar 

  26. Krukenberg, V. et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium of the HotSeep-1 cluster involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol. 18, 3073–3091 (2016)

    CAS  PubMed  Google Scholar 

  27. Ahn, Y., Krzycki, J. A. & Floss, H. G. Steric course of the reduction of ethyl coenzyme M to ethane catalyzed by methyl coenzyme M reductase from Methanosarcina barkeri. J. Am. Chem. Soc. 113, 4700–4701 (1991)

    CAS  Google Scholar 

  28. Scheller, S., Goenrich, M., Thauer, R. K. & Jaun, B. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M. J. Am. Chem. Soc. 135, 14985–14995 (2013)

    CAS  PubMed  Google Scholar 

  29. Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350, 434–438 (2015)

    ADS  CAS  PubMed  Google Scholar 

  30. Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A. & Widdel, F. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Environ. Microbiol. 9, 187–196 (2007)

    CAS  PubMed  Google Scholar 

  31. McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl. Environ. Microbiol. 41, 1029–1039 (1981)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmidt, J. E. & Ahring, B. K. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59, 2546–2551 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt, A., Müller, N., Schink, B. & Schleheck, D. A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. PLoS One 8, e56905 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wasmund, K. et al. Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum Chloroflexi. ISME J. 8, 383–397 (2014)

    CAS  PubMed  Google Scholar 

  35. Stokke, R., Roalkvam, I., Lanzen, A., Haflidason, H. & Steen, I. H. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Environ. Microbiol. 14, 1333–1346 (2012)

    CAS  PubMed  Google Scholar 

  36. Mock, J., Wang, S., Huang, H., Kahnt, J. & Thauer, R. K. Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J. Bacteriol. 196, 3303–3314 (2014)

    PubMed  PubMed Central  Google Scholar 

  37. Möller-Zinkhan, D. & Thauer, R. K. Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch. Microbiol. 153, 215–218 (1990)

    Google Scholar 

  38. Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010)

    ADS  CAS  PubMed  Google Scholar 

  39. Weghoff, M. C., Bertsch, J. & Müller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17, 670–677 (2015)

    CAS  PubMed  Google Scholar 

  40. Callaghan, A. V. Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr. Opin. Biotechnol. 24, 506–515 (2013)

    CAS  PubMed  Google Scholar 

  41. Musat, F. The anaerobic degradation of gaseous, nonmethane alkanes – from in situ processes to microorganisms. Comput. Struct. Biotechnol. J. 13, 222–228 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. So, C. M., Phelps, C. D. & Young, L. Y. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl. Environ. Microbiol. 69, 3892–3900 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heider, J., Szaleniec, M., Sünwoldt, K. & Boll, M. Ethylbenzene dehydrogenase and related molybdenum enzymes involved in oxygen-independent alkyl chain hydroxylation. J. Mol. Microbiol. Biotechnol. 26, 45–62 (2016)

    CAS  PubMed  Google Scholar 

  44. Klenk, H.-P. et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997)

    ADS  CAS  PubMed  Google Scholar 

  45. Ferry, J. G. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. Biol. 27, 473–503 (1992)

    CAS  PubMed  Google Scholar 

  46. Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016)

    CAS  PubMed  Google Scholar 

  47. Stagars, M. H., Ruff, S. E., Amann, R. & Knittel, K. High diversity of anaerobic alkane-degrading microbial communities in marine seep sediments based on (1-methylalkyl)succinate synthase genes. Front. Microbiol. 6, 1511 (2016)

    PubMed  PubMed Central  Google Scholar 

  48. Rabus, R., Boll, M., Golding, B. & Wilkes, H. Anaerobic degradation of p-alkylated benzoates and toluenes. J. Mol. Microbiol. Biotechnol. 26, 63–75 (2016)

    CAS  PubMed  Google Scholar 

  49. Widdel, F. & Bak, F. in The Prokaryotes Vol. 4 (ed Trüper HG Balows A, Dworkin M, Harder W, Schleifer KH ) 3352–3378 (Springer, 1992)

    Google Scholar 

  50. Cord-Ruwisch, R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol Methods 4, 33–36 (1985)

    CAS  Google Scholar 

  51. Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164, 165–172 (1995)

    CAS  PubMed  Google Scholar 

  52. Massana, R., Murray, A. E., Preston, C. M. & DeLong, E. F. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63, 50–56 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Teske, A. et al. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994–2007 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. von Netzer, F. et al. Enhanced gene detection assays for fumarate-adding enzymes allow uncovering of anaerobic hydrocarbon degraders in terrestrial and marine systems. Appl. Environ. Microbiol. 79, 543–552 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Callaghan, A. V. et al. Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ. Sci. Technol. 44, 7287–7294 (2010)

    ADS  CAS  PubMed  Google Scholar 

  56. Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013)

    CAS  PubMed  Google Scholar 

  58. Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012)

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  61. Strous, M., Kraft, B., Bisdorf, R. & Tegetmeyer, H. E. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front. Microbiol. 3, 410 (2012)

    PubMed  PubMed Central  Google Scholar 

  62. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013)

    CAS  PubMed  Google Scholar 

  65. Wu, M. & Scott, A. J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28, 1033–1034 (2012)

    CAS  PubMed  Google Scholar 

  66. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Report No. 2167–9843, (PeerJ PrePrints, 2014)

  67. Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33, W686–W689 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008)

    PubMed  PubMed Central  Google Scholar 

  69. Meyer, F. et al. GenDB–an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 31, 2187–2195 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007)

    CAS  PubMed  Google Scholar 

  71. Quast, C. MicHanThi-design and Implementation of a System for the Prediction of Gene Functions in Genome Annotation Projects. Diploma Thesis, Universität Bremen (2006)

  72. Richter, M. et al. JCoast - a biologist-centric software tool for data mining and comparison of prokaryotic (meta)genomes. BMC Bioinformatics 9, 177 (2008)

    PubMed  PubMed Central  Google Scholar 

  73. Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl Acad. Sci. USA 106, 19126–19131 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

    CAS  PubMed  Google Scholar 

  77. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007)

    CAS  PubMed  Google Scholar 

  78. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015)

    CAS  PubMed  Google Scholar 

  79. Liao, Y., Smyth, G. & Shi, W. featureCounts: an efficient general-purpose read summarization program. Bioinformatics 30, 923–930 (2013)

    PubMed  Google Scholar 

  80. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008)

    CAS  PubMed  Google Scholar 

  81. Wagner, A., Cooper, M., Ferdi, S., Seifert, J. & Adrian, L. Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ. Sci. Technol. 46, 8960–8968 (2012)

    ADS  CAS  PubMed  Google Scholar 

  82. Ishihama, Y. et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics 4, 1265–1272 (2005)

    CAS  PubMed  Google Scholar 

  83. Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014)

    PubMed  PubMed Central  Google Scholar 

  84. Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44 (D1), D447–D456 (2016)

    PubMed  Google Scholar 

  85. Jariwala, F. B., Wood, R. E., Nishshanka, U. & Attygalle, A. B. Formation of the bisulfite anion (HSO3, m/z 81) upon collision-induced dissociation of anions derived from organic sulfonic acids. J. Mass Spectrom. 47, 529–538 (2012)

    ADS  CAS  PubMed  Google Scholar 

  86. Studer, D., Michel, M. & Müller, M. High pressure freezing comes of age. Scanning Microsc. Suppl. 3, 253–268, discussion 268–269 (1989)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Appel, K. Büttner, I. Kattelmann and S. Menger for assistance in cultivation and molecular work, B. Scheer for proteomic analyses, and M. Sickert, J. Then Bergh and K. Dürkop for support in standard synthesis and LC-MS/MS analyses. We thank as well A. Férnandez-Guerra, H. Gruber-Vodicka and P. Offre for supporting us with bioinformatics and biochemistry. We thank A. Boetius for discussions and financial support provided by her Leibniz Grant of the Deutsche Forschungsgemeinschaft (DFG). Research was further financed by the DFG Research Center and Cluster of Excellence MARUM and the Deep Carbon Observatory (Deep Life grant 11121/6152-2121-2329-9973-CC to G.W.), the Max Planck Society and the Helmholtz Society. We are indebted to A. Teske and the shipboard party, the crew and pilots of research expedition AT15-16 Research Vessel Atlantis and Research Submersible Alvin (NSF Grant OCE-0647633). We acknowledge the Centre for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research supported by European regional Development Funds (EFRE – Europe funds Saxony) for using their analytical facilities.

Author information

Authors and Affiliations

Authors

Contributions

G.W. and F.M. retrieved the original samples and performed cultivation. R.L.-P., G.W. and F.M. designed research. R.L.-P., K.K., K.J.H. and V.K. designed the CARD-FISH probes and performed microscopy. R.L.-P., G.W. and F.M. performed physiological experiments. H.E.T. prepared and sequenced the DNA and RNA libraries. R.L.-P., V.K., D.V.M. and M.R. performed metagenomic and transcriptomic analyses. R.L.-P., K.K. and K.J.H. performed phylogenetic analysis. D.R. performed thin-sectioning and electron microscopy. H.-H.R., L.A. and F.M. performed proteome analyses. T.R., O.J.L. and F.M. analysed metabolic intermediates. R.L.-P., G.W., F.W. and F.M. developed the metabolic model, and wrote the manuscript with contributions of all co-authors.

Corresponding authors

Correspondence to Gunter Wegener or Florin Musat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks T. Ettema, M. Jetten, S. Ragsdale and R. Thauer for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Genetic structure of mcr genes in Ca. Syntrophoarchaeum.

In Ca. S. butanivorans one mcr gene set is separated, with the mcrA subunit in scaffold 1, and mcrB and mcrG in scaffold 4.

Extended Data Figure 2 Experiments validating production of alkyl-CoM compounds in anaerobic cultures.

a, Screening for butyl-CoM in Butane50, in a thermophilic AOM culture supplied with butane (n = 2 with 2 different sampling time points), in BuS5 cultures (n = 3) and in controls. The mass peak of butyl-CoM (m/z = 197.0312) was only found in the Butane50 culture. b, Screening for methyl-CoM (m/z = 154.984; mass accuracy –0.15 p.p.m.) in the thermophilic AOM culture supplied with methane (n = 3) and in the Butane50 culture (n = 2). Methyl-CoM was only found in the thermophilic AOM culture. These analyses (a, b) indicate high specificity for either butane or methane in the corresponding cultures. c, Screening for propyl-CoM (m/z = 183.016; mass accuracy –0.21 p.p.m.) in the propane-degrading culture (n = 1) showing activation of this substrate with CoM.

Extended Data Figure 3 Effect of bromoethanesulfonate (BES, 5 mM final concentration) on Butane50 and Ca. D. auxilii cultures.

a, Upon addition of BES, butane-dependent sulfate reduction in Butane50 cultures (circles, n = 2) was immediately inhibited compared to a control without BES (triangles, n = 1). b, By contrast, BES addition had no influence on hydrogen-dependent sulfate reduction in Ca. D. auxilii cultures (triangles, n = 2).

Extended Data Table 1 Microbial diversity in the AOM enrichment21 used as inoculum and in the Butane50 culture
Extended Data Table 2 Draft genome information and pairwise comparison of whole genome identity of Ca. S. butanivorans and the Ca. S. caldarius
Extended Data Table 3 Genes encoding enzymes for butane activation, candidates for further conversion reactions and butyryl-CoA oxidation in Ca. S. butanivorans
Extended Data Table 4 Genes encoding enzymes of C-1 pathway in Ca. S. butanivorans
Extended Data Table 5 Genes encoding proteins related to electron cycling and energy transfer in Ca. S. butanivorans
Extended Data Table 6 BLASTP search of proteins involved in butyrate oxidation. Best results according to the E-value are shown
Extended Data Table 7 Genes encoding Type IV pili and 10 most expressed cytochromes identified in the genome bin of HotSeep-1 in the Butane50 culture

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary Tables 1-5 and Supplementary Figures 1-4. (PDF 2884 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laso-Pérez, R., Wegener, G., Knittel, K. et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539, 396–401 (2016). https://doi.org/10.1038/nature20152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20152

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research