Abstract

Cellular activity in the brain depends on the high energetic support provided by mitochondria, the cell organelles which use energy sources to generate ATP1,2,3,4. Acute cannabinoid intoxication induces amnesia in humans and animals5,6, and the activation of type-1 cannabinoid receptors present at brain mitochondria membranes (mtCB1) can directly alter mitochondrial energetic activity7,8,9. Although the pathological impact of chronic mitochondrial dysfunctions in the brain is well established1,2, the involvement of acute modulation of mitochondrial activity in high brain functions, including learning and memory, is unknown. Here, we show that acute cannabinoid-induced memory impairment in mice requires activation of hippocampal mtCB1 receptors. Genetic exclusion of CB1 receptors from hippocampal mitochondria prevents cannabinoid-induced reduction of mitochondrial mobility, synaptic transmission and memory formation. mtCB1 receptors signal through intra-mitochondrial Gαi protein activation and consequent inhibition of soluble-adenylyl cyclase (sAC). The resulting inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system eventually leads to decreased cellular respiration. Hippocampal inhibition of sAC activity or manipulation of intra-mitochondrial PKA signalling or phosphorylation of the Complex I subunit NDUFS2 inhibit bioenergetic and amnesic effects of cannabinoids. Thus, the G protein-coupled mtCB1 receptors regulate memory processes via modulation of mitochondrial energy metabolism. By directly linking mitochondrial activity to memory formation, these data reveal that bioenergetic processes are primary acute regulators of cognitive functions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008)

  2. 2.

    & Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13, 77–93 (2012)

  3. 3.

    , & Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014)

  4. 4.

    & An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)

  5. 5.

    , , , & Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol. Psychiatry 79, 557–567 (2016)

  6. 6.

    & Roles of the endocannabinoid system in learning and memory. Curr. Top. Behav. Neurosci. 1, 201–230 (2009)

  7. 7.

    et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564 (2012)

  8. 8.

    et al. Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor. Mol. Metab. 3, 495–504 (2014)

  9. 9.

    et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015)

  10. 10.

    MitoProt, a Macintosh application for studying mitochondrial proteins. Comput. Appl. Biosci. 11, 441–447 (1995)

  11. 11.

    & PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999)

  12. 12.

    , , , & Cannabinoid receptor 1 signalling dampens activity and mitochondrial transport in networks of enteric neurones. Neurogastroenterol. and Motil. 21, 958–968 (2009)

  13. 13.

    , , , & Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009)

  14. 14.

    et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci. 12, 1152–1158 (2009)

  15. 15.

    et al. A new non-canonical pathway of Gαq protein regulating mitochondrial dynamics and bioenergetics. Cell. Signal. 26, 1135–1146 (2014)

  16. 16.

    & The heterotrimeric G protein subunit Gαi is present on mitochondria. FEBS Lett. 581, 5765–5768 (2007)

  17. 17.

    et al. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol. Med. 1, 392–406 (2009)

  18. 18.

    et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289, 625–628 (2000)

  19. 19.

    , , & Capturing adenylyl cyclases as potential drug targets. Nat. Rev. Drug Discov. 8, 321–335 (2009)

  20. 20.

    et al. The ‘soluble’ adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 9, 249–259 (2005)

  21. 21.

    et al. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 9, 265–276 (2009)

  22. 22.

    et al. Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol. Biol. Cell 17, 263–271 (2006)

  23. 23.

    , & Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J. Biol. Chem. 272, 15247–15257 (1997)

  24. 24.

    et al. Cre recombinase-dependent expression of a constitutively active mutant allele of the catalytic subunit of protein kinase A. Genesis 43, 109–119 (2005)

  25. 25.

    et al. A curated compendium of phosphorylation motifs. Nat. Biotechnol. 25, 285–286 (2007)

  26. 26.

    , & pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model. Biol. Direct 2, 1–23 (2007)

  27. 27.

    et al. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice. J. Cereb. Blood Flow Metab. 33, 1605–1611 (2013)

  28. 28.

    et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35, 65–69 (2003)

  29. 29.

    & mTOR in brain physiology and pathologies. Physiol. Rev. 95, 1157–1187 (2015)

  30. 30.

    , & The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006)

  31. 31.

    et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002)

  32. 32.

    et al. Chemical probes for the recognition of cannabinoid receptors in native systems. Angew. Chem. Int. Ed. Engl. 51, 6896–6899 (2012)

  33. 33.

    , , , & Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine. Biochemistry 36, 4438–4448 (1997)

  34. 34.

    , , , & Production and titering of recombinant adeno-associated viral vectors. J. Vis. Exp. 27, e3348 (2011)

  35. 35.

    et al. The endocannabinoid system controls food intake via olfactory processes. Nat. Neurosci. 17, 407–415 (2014)

  36. 36.

    et al. A restricted population of CB1 cannabinoid receptors with neuroprotective activity. Proc. Natl Acad. Sci. USA 111, 8257–8262 (2014)

  37. 37.

    et al. The Eutherian Armcx genes regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat. Commun. 3, 814 (2012)

  38. 38.

    et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim. Biophys. Acta 1807, 707–718 (2011)

  39. 39.

    , , & Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria. Cell. Mol. Life Sci. 68, 2603–2613 (2011)

  40. 40.

    et al. Proteomic analysis of an imatinib-resistant K562 cell line highlights opposing roles of heat shock cognate 70 and heat shock 70 proteins in resistance. Proteomics 8, 2394–2406 (2008)

  41. 41.

    , , , & Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925 (2007)

  42. 42.

    et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479–491 (2013)

  43. 43.

    & Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol. 80, 627–682 (2007)

  44. 44.

    et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153, 1510–1525 (2013)

  45. 45.

    , , & Method of quantifying the G protein-coupled receptor (GPCR)/G protein coupling using a cell membrane array. Patent US 8017346 B2. Google Patents (2013)

  46. 46.

    et al. Method for the surface treatment of solid substrates. Patent EP 2048534 A1 Google Patents (2009)

  47. 47.

    et al. Differential role of anandamide and 2-arachidonoylglycerol in memory and anxiety-like responses. Biol. Psychiatry 70, 479–486 (2011)

  48. 48.

    et al. Dissociation of the pharmacological effects of THC by mTOR blockade. Neuropsychopharmacology 38, 1334–1343 (2013)

Download references

Acknowledgements

We thank D. Gonzales,N. Aubailly and all the personnel of the Animal Facility of the NeuroCentre Magendie, M. Biguerie of the technical service of the NeuroCentre Magendie, the personnel from the Bordeaux Imaging Center and V. Morales for continuous help. We thank G. Manfredi (Cornell University) for the sAC–HA, A. Feliciello (University of Napoli) for anti-AKAP121 antiserum and for AKAP121 shRNA, and M. Montcouquiol, N. Piguel (INSERM U1215, Bordeaux) and R. Rossignol (University of Bordeaux) for help with experiments. We thank F. Francia, P. V. Piazza, A. Bacci, G. Ferreira, F. Chaouloff and M. Guzman for critical reading and the members of Marsicano’s laboratory for discussions. This work was supported by INSERM (G.M., D.C.), EU–Fp7 (PAINCAGE, HEALTH-603191, G.M. and FP7-PEOPLE-2013-IEF-623638, A.B.-G.), European Research Council (Endofood, ERC–2010–StG–260515 and CannaPreg, ERC-2014-PoC-640923, G.M.), Fondation pour la Recherche Medicale (DRM20101220445, G.M., SPF20121226369, R.S. and ARF20140129235, L.B.), Fondation pour la Recherche en Psychiatrie et en Santé Mentale (FRPSM, G.M.), Human Frontiers Science Program (RGP0036/2014, G.M.), Region Aquitaine (G.M.), AFM Telethon Trampoline Grant (16474, G.B.), Agence Nationale de la Recherche (ANR Blanc NeuroNutriSens ANR-13-BSV4-0006, G.M., D.C., BRAIN ANR-10-LABX-0043, G.M., D.C., F.M. and ANR-10-IDEX-03-02, A.B.-G.), Dulbecco Telethon Institute post-doc fellowship (E.H.-C.), NSERC (RGPIN-2015-05880, E.H.-C.), Fyssen Foundation (E.S.-G.), EMBO post-doc fellowship (L.B.), CONACyT (E.S.-G.), Zabalduz pre-doc fellowship (M.D.G.-F.), the Basque Government (IT764-13, P.G.), MINECO/FEDER (SAF2015-65034-R, P.G.), University of the Basque Country (UPV/EHU UFI11/41, P.G.), Red de Trastornos Adictivos—Instituto de Salud Carlos III (RD12/0028/0004, RD16/0017/0012, P.G.).

Author information

Author notes

    • Etienne Hebert-Chatelain
    • , Tifany Desprez
    • , Román Serrat
    •  & Luigi Bellocchio

    These authors contributed equally to this work.

    • Giovanni Bénard
    •  & Giovanni Marsicano

    These authors jointly supervised this work.

Affiliations

  1. INSERM U1215, NeuroCentre Magendie, Bordeaux 33077, France

    • Etienne Hebert-Chatelain
    • , Tifany Desprez
    • , Román Serrat
    • , Luigi Bellocchio
    • , Edgar Soria-Gomez
    • , Arnau Busquets-Garcia
    • , Antonio Christian Pagano Zottola
    • , Anna Delamarre
    • , Astrid Cannich
    • , Peggy Vincent
    • , Marjorie Varilh
    • , Laurie M. Robin
    • , Geoffrey Terral
    • , Michelangelo Colavita
    • , Wilfrid Mazier
    • , Daniela Cota
    • , Federico Massa
    • , Giovanni Bénard
    •  & Giovanni Marsicano
  2. Université de Bordeaux, NeuroCentre Magendie, Bordeaux 33077, France

    • Etienne Hebert-Chatelain
    • , Tifany Desprez
    • , Román Serrat
    • , Luigi Bellocchio
    • , Edgar Soria-Gomez
    • , Arnau Busquets-Garcia
    • , Antonio Christian Pagano Zottola
    • , Anna Delamarre
    • , Astrid Cannich
    • , Peggy Vincent
    • , Marjorie Varilh
    • , Laurie M. Robin
    • , Geoffrey Terral
    • , Michelangelo Colavita
    • , Wilfrid Mazier
    • , Daniela Cota
    • , Federico Massa
    • , Giovanni Bénard
    •  & Giovanni Marsicano
  3. Department of Biology, Université de Moncton, Moncton, New-Brunswick E1A 3E9, Canada

    • Etienne Hebert-Chatelain
  4. Department of Biochemistry and Molecular Biology I, Complutense University, Madrid 28040, Spain

    • Luigi Bellocchio
  5. Department of Research and Development, IMG Pharma Biotech S.L., Derio 48160, Spain

    • M. Dolores García-Fernández
    •  & Gabriel Barreda-Gómez
  6. Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa 48940, Spain

    • M. Dolores García-Fernández
  7. Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95124, Italy

    • Michelangelo Colavita
    •  & Filippo Drago
  8. Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa 48940, Spain

    • Nagore Puente
    • , Leire Reguero
    • , Izaskun Elezgarai
    •  & Pedro Grandes
  9. Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, Zamudio 48170, Spain

    • Nagore Puente
    • , Leire Reguero
    • , Izaskun Elezgarai
    •  & Pedro Grandes
  10. Université de Bordeaux, Centre Génomique Fonctionnelle, Plateforme Protéome, Bordeaux 33077, France

    • Jean-William Dupuy
  11. Department of Organic Chemistry, Complutense University, Madrid 28040, Spain

    • Maria-Luz Lopez-Rodriguez
  12. Division of Medical Sciences, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada

    • Pedro Grandes

Authors

  1. Search for Etienne Hebert-Chatelain in:

  2. Search for Tifany Desprez in:

  3. Search for Román Serrat in:

  4. Search for Luigi Bellocchio in:

  5. Search for Edgar Soria-Gomez in:

  6. Search for Arnau Busquets-Garcia in:

  7. Search for Antonio Christian Pagano Zottola in:

  8. Search for Anna Delamarre in:

  9. Search for Astrid Cannich in:

  10. Search for Peggy Vincent in:

  11. Search for Marjorie Varilh in:

  12. Search for Laurie M. Robin in:

  13. Search for Geoffrey Terral in:

  14. Search for M. Dolores García-Fernández in:

  15. Search for Michelangelo Colavita in:

  16. Search for Wilfrid Mazier in:

  17. Search for Filippo Drago in:

  18. Search for Nagore Puente in:

  19. Search for Leire Reguero in:

  20. Search for Izaskun Elezgarai in:

  21. Search for Jean-William Dupuy in:

  22. Search for Daniela Cota in:

  23. Search for Maria-Luz Lopez-Rodriguez in:

  24. Search for Gabriel Barreda-Gómez in:

  25. Search for Federico Massa in:

  26. Search for Pedro Grandes in:

  27. Search for Giovanni Bénard in:

  28. Search for Giovanni Marsicano in:

Contributions

E.H.-C., T.D., R.S. and L.B. performed biochemical, molecular biology, behavioural and cellular experiments; E.S.-G., A.B.-G. and L.M.R. helped with behavioural experiments and analyses; E.S.-G., A.C.P.Z., A.C., A.D., P.V. and M.V. helped with biochemistry and molecular biology; G.T., M.C., F.D., W.M., D.C. and F.M. performed electrophysiological studies; M.D.G.-F. and G.B.-G. performed G protein signalling and binding experiments; N.P., L.R., I.E. and P.G. performed electron microscopy experiments; J.-W.D. provided proteomics experiments; M.-L.L.-R. provided reagents; G.B. and G.M. supervised the work; E.H.-C., T.D., G.B. and G.M. wrote the manuscript; all authors discussed results and edited the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Giovanni Marsicano.

Reviewer Information

Nature thanks M. Mattson and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Figure 1, which shows uncropped Western Immunoblotting images used for the relative panels of main figures.

Videos

  1. 1.

    Cannabinoids reduce mitochondrial mobility in hippocampal neurons via CB1 receptors

    Effect of the CB1 receptor agonist HU210 on mitochondrial mobility in CB1-/- hippocampal neurons re-expressing CB1. Representative time-lapse live imaging of axonal mitochondria before and after treatment of HU210 (1µM) for 15 min in a primary hippocampal neuron from CB1-/- mice, transfected with CB1-GFP. See Fig. 1e.

  2. 2.

    Cannabinoid-induced reduction of mitochondrial mobility depends on mtCB1 receptors

    Re-expression of DN22-CB1 fails to rescue the HU210-dependent decrease of mitochondrial mobility in CB1-/- hippocampal neurons. Representative time-lapse live imaging of axonal mitochondria before and after treatment of HU210 (1µM) for 15 min in a primary hippocampal neuron from CB1-/- mice, transfected with DN22-CB1-GFP. See Fig. 1e.

  3. 3.

    Cannabinoid-induced reduction of mitochondrial mobility depends on sAC signaling.

    Representative time-lapse live imaging of axonal mitochondria before and after treatment of HU210 (1µM) and vehicle for 15 min in a primary hippocampal neuron from CB1-/- mice, transfected with CB1-GFP. See Fig. 3b.

  4. 4.

    Cannabinoid-induced reduction of mitochondrial mobility depends on sAC signaling.

    The sAC inhibitor KH7 blocks the reduction of mitochondrial mobility induced by HU210. Representative time-lapse live imaging of axonal mitochondria before and after treatment of HU210 (1µM) for 15min in the presence of KH7 (5µM) in a primary hippocampal neuron from CB1-/- mice, transfected with CB1-GFP. See Fig. 3b.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature20127

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.