Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-bound droplets of a dilute magnetic quantum liquid

Abstract

Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. It has been suggested1,2 that self-bound ensembles of ultracold atoms should exist for atom number densities that are 108 times lower than in a helium droplet, which is formed from a dense quantum liquid. However, such ensembles have been elusive up to now because they require forces other than the usual zero-range contact interaction, which is either attractive or repulsive but never both. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term3, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist4,5. Here we report the observation of such droplets in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms. These droplets are the dilute counterpart of strongly correlated self-bound systems such as atomic nuclei6 and helium droplets7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental sequence.
Figure 2: Droplet survival probability.
Figure 3: Critical atom number.
Figure 4: Phase transition between dilute liquid and gas.

Similar content being viewed by others

References

  1. Petrov, D. S. Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 115, 155302 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Bulgac, A. Dilute quantum droplets. Phys. Rev. Lett. 89, 050402 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates. Phys. Rev. A 94, 043618 (2016)

    Article  ADS  CAS  Google Scholar 

  5. Baillie, D., Wilson, R. M., Bisset, R. N. & Blakie, P. B. Self-bound dipolar droplet: a localized matter wave in free space. Phys. Rev. A 94, 021602(R) (2016)

    Article  ADS  CAS  Google Scholar 

  6. Bender, M., Heenen, P.-H. & Reinhard, P.-G. Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Dalfovo, F. & Stringari, S. Helium nanodroplets and trapped Bose–Einstein condensates as prototypes of finite quantum fluids. J. Chem. Phys. 115, 10078–10089 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Volovik, G. The Universe in a Helium Droplet 27–31 (Oxford Univ. Press, 2009)

  9. Toennies, J. P. & Vilesov, A. F. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Ed. 43, 2622–2648 (2004)

    Article  CAS  Google Scholar 

  10. Gomez, L. F. et al. Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906–909 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macro-droplet in a dipolar quantum fluid. Preprint at https://arxiv.org/abs/1607.06613 (2016)

  13. Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  ADS  CAS  Google Scholar 

  14. Tang, Y., Sykes, A., Burdick, N. Q., Bohn, J. L. & Lev, B. L. s-wave scattering lengths of the strongly dipolar bosons 162Dy and 164Dy. Phys. Rev. A 92, 022703 (2015)

    Article  ADS  CAS  Google Scholar 

  15. Maier, T. et al. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X 5, 041029 (2015)

    PubMed  PubMed Central  Google Scholar 

  16. Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose–Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Bisset, R. N., Wilson, R. M., Baillie, D. & Blakie, P. B. Ground-state phase diagram of a dipolar condensate with quantum fluctuations. Phys. Rev. A 94, 033619 (2016)

    Article  ADS  CAS  Google Scholar 

  19. Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose–Einstein condensates. Phys. Rev. A 93, 061603 (2016)

    Article  ADS  CAS  Google Scholar 

  20. Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Lima, A. R. P. & Pelster, A. Beyond mean-field low-lying excitations of dipolar Bose gases. Phys. Rev. A 86, 063609 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Saito, H. Path-integral Monte Carlo study on a droplet of a dipolar Bose–Einstein condensate stabilized by quantum fluctuation. J. Phys. Soc. Jpn 85, 053001 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. P. Büchler, L. Santos, F. Ferlaino, W. Ketterle, H. Sadeghpour, M. Zwierlein and V. Vuletic´ for discussions. This work is supported by the German Research Foundation (DFG) within SFB/TRR21 as well as FOR 2247. I.F.-B. acknowledges support from the EU within Horizon2020 Marie Skłodowska Curie IF (703419 DipInQuantum).

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results, made critical contributions to the work and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Matthias Schmitt or Tilman Pfau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks B. Blakie, R. Hulet and the other anonymous reviewer(s) for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, M., Wenzel, M., Böttcher, F. et al. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016). https://doi.org/10.1038/nature20126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing