Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emergence of a turbulent cascade in a quantum gas


A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov1,2, and such cascades have since been observed in various systems, including interplanetary plasmas3, supernovae4, ocean waves5 and financial markets6. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose–Einstein condensate in an optical box7, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross–Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: From unidirectional sloshing to isotropic turbulence.
Figure 2: Nonlinear spectroscopy of the lowest axial mode of the BEC and the route to turbulence.
Figure 3: Development of a turbulent cascade.


  1. 1

    Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941)

    ADS  MathSciNet  Google Scholar 

  2. 2

    Obukhov, A. On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR 32, 22–24 (1941)

    Google Scholar 

  3. 3

    Sorriso-Valvo, L. et al. Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99, 115001 (2007)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376–379 (2015)

    ADS  Article  Google Scholar 

  5. 5

    Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr. 30, 2753–2767 (2000)

    ADS  Article  Google Scholar 

  6. 6

    Ghashghaie, S., Breymann, W., Peinke, J., Talkner, P. & Dodge, Y. Turbulent cascades in foreign exchange markets. Nature 381, 767–770 (1996)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P. & Hadzibabic, Z. Bose-Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013)

    ADS  Article  Google Scholar 

  8. 8

    Paoletti, M. S. & Lathrop, D. P. Quantum turbulence. Annu. Rev. Condens. Matter Phys. 2, 213–234 (2011)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Chesler, P. M., Liu, H. & Adams, A. Holographic vortex liquids and superfluid turbulence. Science 341, 368–372 (2013)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  10. 10

    Maurer, J. & Tabeling, P. Local investigation of superfluid turbulence. Europhys. Lett. 43, 29–34 (1998)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Walmsley, P. M. & Golov, A. I. Quantum and quasiclassical types of superfluid turbulence. Phys. Rev. Lett. 100, 245301 (2008)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Bradley, D. et al. Direct measurement of the energy dissipated by quantum turbulence. Nat. Phys. 7, 473–476 (2011)

    CAS  Article  Google Scholar 

  13. 13

    Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov-Deglin, L. P. & McClintock, P. V. E. Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium. Phys. Rev. Lett. 101, 065303 (2008)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Abdurakhimov, L. V., Brazhnikov, M. Y., Levchenko, A. A., Remizov, I. & Filatov, S. Turbulent capillary cascade near the edge of the inertial range on the surface of a quantum liquid. JETP Lett. 95, 670–679 (2012)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Kolmakov, G. V., McClintock, P. V. E. & Nazarenko, S. V. Wave turbulence in quantum fluids. Proc. Natl Acad. Sci. USA 111, 4727–4734 (2014)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  16. 16

    Kagan, Y. & Svistunov, B. V. Evolution of correlation properties and appearance of broken symmetry in the process of Bose–Einstein condensation. Phys. Rev. Lett. 79, 3331–3334 (1997 ) ; erratum 80, 892 (1998)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Nore, C., Abid, M. & Brachet, M. E. Kolmogorov turbulence in low-temperature superflows. Phys. Rev. Lett. 78, 3896–3899 (1997)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Berloff, N. G. & Svistunov, B. V. Scenario of strongly nonequilibrated Bose–Einstein condensation. Phys. Rev. A 66, 013603 (2002)

    ADS  Article  Google Scholar 

  19. 19

    Kobayashi, M. & Tsubota, M. Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross–Pitaevskii equation with a small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2005)

    ADS  Article  Google Scholar 

  20. 20

    Proment, D., Nazarenko, S. & Onorato, M. Quantum turbulence cascades in the Gross-Pitaevskii model. Phys. Rev. A 80, 051603 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett. 110, 104501 (2013)

    ADS  Article  Google Scholar 

  22. 22

    Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose–Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Neely, T. W. et al. Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Phys. Rev. Lett. 111, 235301 (2013)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Kwon, W. J., Moon, G., Choi, J., Seo, S. W. & Shin, Y. Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014)

    ADS  Article  Google Scholar 

  25. 25

    Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose-Einstein condensates. Phys. Rep. 622, 1–52 (2016)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  26. 26

    Gotlibovych, I. et al. Observing properties of an interacting homogeneous Bose–Einstein condensate: Heisenberg-limited momentum spread, interaction energy, and free-expansion dynamics. Phys. Rev. A 89, 061604 (2014)

    ADS  Article  Google Scholar 

  27. 27

    Schmidutz, T. F. et al. Quantum Joule–Thomson effect in a saturated homogeneous Bose gas. Phys. Rev. Lett. 112, 040403 (2014)

    ADS  Article  Google Scholar 

  28. 28

    Zakharov, V. E., L’Vov, V. S. & Falkovich, G. Kolmogorov Spectra of Turbulence (Springer, 1992)

  29. 29

    Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation and Superfluidity Ch. 12 (Oxford Univ. Press, 2016)

  30. 30

    Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999)

    CAS  ADS  Article  Google Scholar 

Download references


We thank G. V. Shlyapnikov, B. Svistunov, S. Stringari, N. R. Cooper, J. Dalibard, M. J. Davis, R. J. Fletcher, M. W. Zwierlein, K. Fujimoto and M. Tsubota for discussions, and C. Eigen for experimental assistance. This work was supported by AFOSR, ARO, DARPA OLE, EPSRC (Grant No. EP/N011759/1) and ERC (QBox). The GeForce GTX TITAN X used for the numerical simulations was donated by the NVIDIA Corporation. N.N. and A.L.G. acknowledge support from Trinity College, Cambridge; R.P.S. acknowledges support from the Royal Society.

Author information




N.N. initiated the project, and took and analysed the data. A.L.G. wrote the code for the numerical simulations and analysed the results. Z.H. supervised the project. All authors contributed extensively to the interpretation of the data and the writing of the manuscript.

Corresponding author

Correspondence to Nir Navon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Momentum distributions from TOF and Bragg techniques.

a, b, Comparison of n1D(kz) obtained using TOF expansion (solid lines) and Bragg spectroscopy (points), in the case of the initial, quasi-pure BEC (a) and the turbulent gas (b). The red dashed line in a corresponds to the Heisenberg-limited momentum distribution. All distributions are normalized to unity (), without any adjustable parameters.

Source data

Extended Data Figure 2 Turbulent cascade in numerical simulations.

a, In-plane momentum distribution for various shaking times ts. b, Ratio of the compressible- (c) to incompressible-flow (i) components of the fluid-dynamical kinetic energy, with the colours corresponding to the shaking times in a. The simulation parameters for both panels are N = 8 × 104, shaking frequency ω/(2π) = 9 Hz and shaking amplitude ΔU = μ.

Source data

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navon, N., Gaunt, A., Smith, R. et al. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing